
Ground Operations Aerospace Language

GOAL

Final Report

Volume V

Application Studies

(NASA-CB-136777) GROUND OPERATIONS N74-15891
AEROSPACE LANGUAGE (GOAL). VOLUME 5:
APPLICATION STUDIES Final Report
(International Business Machines Corp.) Unclas

-fr- p HC $6.00 CSCL 09B G3/08 28969

31 July 1973

Ground Operations Aerospace Language

GOAL

Final Report

Volume V

Application Studies

Contract NAS 10-6900

Approved y:
. W. ley, Manager

Systems Programming an
Advanced Programs

"-"-- Federal Systems Division 31 July 1973

TABLE OF CONTENTS

Section Title Page

1.0 INTRODUCTION--------------------------------- 1-1

2.0 GOAL SHORT FORMS---------------------------------- 2-1

2.1 Introduction --------------------------- 2-1
2.2 Guidelines for Developing a Parsable

Alternative Vocabulary---------------------- 2-1
2.3 Implementing an Alternative Vocabulary------ 2-2
2.4 Examples of MBNF Equations--------------- 2-3
2.5 Examples of Statements Using Alternative

Words and Conversion to the GOAL Vocabulary- 2-4
2.6 Implementing an Alttrnative Vocabulary------ 2-5
2.7 Implementing Error Messages----------------- 2-5
2.8 GOAL Short Form Example-------------------- 2-5

3.0 ENGINEERING UNITS TECHNIQUES ----------------------- 3-1

3.1 Purpose of Document------------------------- 3-1
3.2 Technical Approach------------------------- 3-1
3.3 System of Units--------------------------- 3-2
3.4 Specialized Systems------------------------ 3-3
3.5 Ambiguities---------------------------- 3-5
3.6 Working Units----------------------------- 3-6
3.7 Compiler and Operating System Ground Rules-- 3-7
3.8 Arithmetical Expressions-------------------- 3-7
3.9 Comparison Tests-------------------------- 3-8
3.10 Analog I/O-------------------------------- 3-8
3.11 Keyboard and Display I/O-------------------- 3-8
3-12 Potential Problem Areas------------------ 3-8
3-13 Implementation Techniques------------------- 3-9

4.0 SUBROUTINE PARAMETER VALIDATION -------------------- 4-1

4.1 Purpose of Document------------------------ 4-1
4.2 Technical Approach------------------------- 4-1
4.3 Validation Criteria------------------------- 4-1
4.4 Validation Procedures---------------------- 4-1
4.5 Implementation Techniques------------------- 4-2

1

TABLE OF CONTENTS (Cont)

Section Title Page

5.0 SELECTED APPLICATIONS---------------------------- 5-1

5.1 Objectives----------------------------- 5-1
5.2 Approach-------------------------------- 5-1
5.3 Technical Summary-------------------------- 5-2

6.0 SYSTEM MACROS----------------------------------- 6-1

6.1 Introduction --------------------------- 6-1
6.2 Objectives ---------------------------- 6-1
6.3 Approach-------------------------------- 6-1
6.4 Summary--------------------------------- 6-2
6.5 Conclusions---------------------------- 6-3

APPENDIX A Selected Applications (Machine Printouts)

ii

1.0 INTRODUCTION

The Ground Operations Aerospace Language (GOAL) was designed to be used
by test oriented personnel to write procedures which would be executed
in a test environment. A series of discussions between NASA LV-CAP
personnel and IBM resulted in some peripheral tasks which would aid in
evaluating the applicability of the language in this environment, and
provide enhancement for future applications. The results of these tasks
are contained within this volume.

The GOAL vocabulary provides a high degree of readability and retainability.
To achieve these benefits, however, the procedure writer utilizes words and
phrases of considerable length. Brief form study was undertaken to deter-
mine a means of relieving this burden. The study resulted in a version of
GOAL which enables the writer to develop a dialect suitable to his needs
and satisfy the syntax equations. The output of the compiler would continue
to provide readability by printing out the standard GOAL language. This
task is described in Section 2.0.

Section 3.0 provides the results of a study which identifies and recommends
resolution of general problems associated with using engineering units in
the GOAL language. A candidate set of units to support the terminology of
various engineering disciplines is identified, and methods for input/output
scaling of these units to the MKS system are recommended.

Section 4.0 defines validation requirements and techniques for passing
parameters to subroutines. Validation procedures are defined for sub-
routine writers, subroutine users, and for configuration control via-the
Data Bank. Implementation techniques are defined for the Data Bank and the
Compiler.

Several current automated procedures were manually converted to the GOAL
language to verify the adaptability of the language to the environment.
Section 5.0 discusses this conversion and provides examples of the results.

The final section of the volume, Section 6.0, defines the use of system
macros to facilitate frequently required and/or complex GOAL sequences.
Several macros were developed and are demonstrated to show feasibility.

1-1

SECTION 2.0

GOAL SHORT FORMS

2.1 INTRODUCTION

The GOAL compiler has the capability of processing test procedures written
in the GOAL language and/or a suitable alternative language. The alternate
language may be a 'shorthand' form of GOAL or even a foreign language. The
present version of the compiler provides a short form vocabulary for use in
writing GOAL test procedures. Table 2-1 contains two lists of all GOAL words
and phrases with their corresponding short form alternates. The first list
is in the order of the GOAL syntax equations. The second list is in alpha-
betical order of the GOAL words and phrases.

2.2 GUIDELINES FOR DEVELOPING A PARSABLE ALTERNATIVE VOCABULARY

2.2.1 GOAL Parsing Technique

The parsing of GOAL statements is controlled by the syntax table developed
from the MBNF syntax equations. The compiler uses a table guided top-down
parsing algorithm. The syntax table guides the parser in scanning state-
ments in the input stream. Permissible constructions are recognized
according to the contents of the syntax table. The recognition criterion
is simple appearance. If a construction is not recognized, alternate
definitions are tested.

EXAMPLE:

<GOAL STMT> = <SYSTEM STMT>

<PROCEDURAL STMT>

<DECLARATION STMT>;

The syntax table will guide the parser through all system statements until
a permissible construction is identified. If the construction is not
recognized as a system statement then the parser will test the construction
against the procedural and then the declaration statements.

The technique implies that keyword verbs must be unique in the order of
appearance. For instance, if 'AB' were the first system statement keyword
verb, then no alternate statement keyword could be composed of 'AB' as the
first two characters.

EXAMPLE:

<SYSTEM STMT> = <KEYWORD 1>

<KEYWORD 2>

<KEYWORD 3> ;

<KEYWORD 1> = 'AB' ;

<KEYWORD 2> = 'ABC' ;

<KEYWORD 3> = 'A'

2-1

Keywords 1 and 3 will be recognized by the parser. However, keyword 2
will never be recognized because of the lack of uniqueness in the order
of keyword appearance. That is, whenever keyword 2, 'ABC', is parsed
it will satisfy the keyword 1 equation.

The following equations show the required order of appearance of key-
words for proper parsing.

<SYSTEM STMT> = <KEYWORD 1>

<KEYWORD 2>

<KEYWORD 3> ;

<KEYWORD 1> = 'ABC' ;

<KEYWORD 2> = 'AB' ;

<KEYWORD 3> = 'A';

The above equations will enable parsing of either of the three keywords
because the keywords are now unique in the order of their appearances
in the equations.

2.3 IMPLEMENTING AN ALTERNATIVE VOCABULARY

A particular alternative vocabulary is implemented through the GOAL
modified Bachus Naur Form syntax equations. More specifically, the
implementation is accomplished by substituting or including alternative
text in the GOAL vocabulary syntax equations.

There are five groups of syntax equations which contain all of the GOAL
vocabulary.

o System statement Keywords

o Prefix Keywords

o Procedural Statement Keywords

o Declaration Statement Keywords

o GOAL Words and Phrases

The method of implementing an alternative vocabulary is the same for
either group.

2-2

The GOAL vocabulary and an alternative vocabulary may appear in the MBNF
syntax equations in three forms as follows:

Form 1. <X> = 'Tl' ;

Where X is the symbolic name of a GOAL word or phrase and Tl is the text
for the GOAL word or phrase. The Form 1 equation makes no provision for
alternatives to the GOAL words and phrases.

Form 2. <X> = 'Tl' I <Z> ;

<Z> = Rl 'T2' R2 ;

Where X and TI are the same as in Form 1, Z is the symbolic name of an
alternate for T1. T2 is the alternative text for T1. Rl and R2 are action
subroutines, called by the parser, which accomplish the substitution of
GOAL words and phrases, T1, for corresponding alternates, T2.

Form 3. <X> = <Y> I <Z> ;

<Y> = 'Tl' 'S'? ;

<Z> = RI 'T2' R3 ;

Where X, Z, T1, R1, T2 are as previously defined. Y is the symbolic name
of an optionally plural GOAL word. R3 is the action routine, called by
the parser, which appends the letter S to the GOAL word if the alternative
word is pluralized. Care must be taken not to make a word optionally
plural whenever the next word in the statement begins with the letter S.

2.4 EXAMPLES OF MBNF EQUATIONS

Form 1 is used when there is to be no alternate for the GOAL word or phrase.

<BEGIN> = 'BEGIN' ;

Form 2 is used when there is an alternate for the GOAL word or phrase.

<BEGIN> = 'BEGIN'I <COOl> ;

<COOl> = #5101 'BGN' #5102 ;

The Form 2 equation enables parsing of either the word BEGIN or BGN. If
the user has specified the compiler directive for substituting GOAL words
and phrases for their alternates, then the word BGN will be replaced by
BEGIN.

2-3

Form 3 is used when there is a short form for an optionally plural GOAL
word or phrase.

<COLUMNS> = <C077> I <C078> ;

<C077> = 'COLUMN' 'S'?

<C078> = #5101 'C' #5103 ;

The Form 3 equation enables parsing of the words COLUMN, COLUMNS, C and
CS. If the user has specified the compiler directive for substituting
GOAL words and phrases for their alternates, then the words C and CS will
be replaced by COLUMN and COLUMNS respectively.

2.5 EXAMPLES OF STATEMENTS USING ALTERNATIVE WORDS AND CONVERSION
TO THE GOAL VOCABULARY

a. BGN PGM:

converts to,

BEGIN PROGRAM:

b. STP , S190, S200;

converts to,

STOP AND INDICATE RESTART LABELS STEP190, STEP200;

Note: LABELS is followed by a word beginning with

the letter S and therefore cannot be optionally

plural.

c. DCL STA TAB (WATER VALVE)

W 1 R AND 2 CS

TTL (OPEN),(CLOSED) WE

<WVON> , (ON) , (OFF) ;

converts to,

DECLARE STATE TABLE (WATER VALVE)

WITH 1 ROW AND 2 COLUMNS

TITLED (OPEN),(CLOSED) WITH ENTRIES

<WVON> , (ON) , (OFF) ;

2-4

2.6 IMPLEMENTING AN ALTERNATIVE VOCABULARY

To implement an alternative vocabulary one must select a Form 2 or Form 3
equation for each alternate word or phrase to be accommodated by the GOAL
compiler. Then by following the procedures in paragraphs 2.3 and 2.4 above
the MBNF syntax equations are written to describe a particular vocabulary.
These equations, when keypunched, are used to replace corresponding
equations in the GOAL Syntax Equation Table. This modified table is then
used to generate a uniquely numbered GOAL compiler syntax table. This
table will control parsing by the GOAL compiler when the table number is
specified to the compiler at compile time, enabling statements written in
the alternative vocabulary to be parsed and/or converted to the GOAL
vocabulary.

2.7 IMPLEMENTING ERROR MESSAGES

Whenever errors are detected by the GOAL compiler, appropriate messages
are listed for the test engineer to assist him in developing syntactically
and semantically correct test procedures. These messages are contained in
the GOAL error message file and are written in the context of the GOAL
vocabulary. For example:

error number 925 states,

KEYWORD NOT FOUND - COLUMNS.

error number 100 states,

INVALID ROW DESIGNATOR OR KEYWORD 'ROW' IS MISSING

When an alternative vocabulary is to be implemented an error message file
should be developed in terms of that vocabulary. The GOAL error message
file is the baseline for developing error messages for an alternative
vocabulary. The error message numbers are not to be changed. It is
recommended that a distinct error message file be developed for each
alternative to the GOAL vocabulary. The appropriate error file, GOAL
or alternative error file, can be selected at compile time for use by
the GOAL compiler.

ERROR MESSAGE CARD FORMAT

COLUMN 1, 2 AND 3 - Three digit error number.

COLUMN 5 through 80 - The error message.

2.8 GOAL SHORT FORM EXAMPLE

Figure 2-1 is the GOAL Compiler listing of a test orocedure which was
written in short form GOAL. This test procedure is a portion of the
Instrument Unit Mechanical Systems Procedure for support of IU Stage
Power. The test procedure was compiled under the user option to
convert from the short form to GOAL.

2-5

Table 2-1

SHORT FORM LIST 1

* SYSTEM STATEMENT KEYWORDS

* GOAL * SHORT FORM

BEGIN BGN

MACRO MAC

PROGRAM PGM

SUBROUTINE SUB

END END

EXECUTE XEC

EXPAND XPD

EXPAND AND EXECUTE XAX

FREE FRE

REPLACE RPL

USE USE

* PREFIX KEYWORDS

* GOAL * SHORT FORM

STEP STEP

S S

AFTER AFR

WHEN WHN

VERIFY VFY

IF IF

2-6

Table 2-1
(Continued)

* PROCEDURAL STATEMENT KEYWORDS

* GOAL * SHORT FORM

ACTIVATE ACT

APPLY APA

SEND SDA

ASSIGN ASN

AVERAGE AVG

EVERY EVY

CONCURRENTLY CNC

DELAY DLY

WAIT WTE

DISABLE DBL

GO TO GTO

INHIBIT INH

ISSUE ISU

LEAVE LVE

LET LET

PERFORM PER

CRITICAL CTL

READ RDE

MEASURE MSR

DISPLAY DSP

PRINT PRT

RECORD RCD

RELEASE RLS

REPEAT REP

2-7

Table 2-1
(Continued)

REQUEST REQ

RESUME RSM

SET SET

OPEN OPN

CLOSE CLO

TURN ON TON

TURN OFF TFF

STOP STP

TERMINATE TRM

SYSTEM SYS

WHEN INTERRUPT WNT

DECLARATION STATEMENT KEYWORDS

DECLARE DCL

NUMBER NBR

QUANTITY QTY

STATE STA

TEXT TXT

NUMERIC LIST RC LST

QUANTITY LIST QTY LST

STATE LIST STA LST

TEXT LIST TXT LST

NUMERIC TABLE NRC TAB

QUANTITY TABLE QTY TAB

STATE TABLE STA TAB

TEXT TABLE TXT TAB

2-8

Table 2-1
(Continued)

* GOAL WORDS AND PHRASES

* GOAL * SHORT FORM

ALL ALL

AND AND

AND INDICATE RESTART LABELS

AND SAVE AS ASA

ARE ARE

B B

BETWEEN BTW

(1) CHARACTERS CHRS

CLOSED CLD

(1) COLUMNS CS

(1) DAYS DAYS

ELSE ELSE

ENTRIES E

ENTRY E

EQUAL TO EQ

(1) EXCEPTIONS XCPS

FALSE FALSE

FOR FOR

FROM FROM

FUNCTIONS FNS

GREATER THAN GT

GREATER THAN OR EQUAL TO GEQ

(1) HRS HRS

2-9

Table 2-1
(Continued)

IS IS

LESS THAN LT

LESS THAN OR EQUAL TO LEQ

(1) MINS MINS

(1) MSECS MSECS

NOT NOT

NOT EQUAL TO NEQ

OCCURS

OFF OFF

ON ON

OR OR

PRESENT VALUE OF PV

READINGS OF RO

RETURN RTN

REVISION REV

(1) ROWS RS

(1) SECS SECS

T T

TEXT TXT

THEN THEN or

THROUGH

TIMES TMS

TITLED TTL

TO TO

2-10

Table 2-1
(Continued)

TRUE TRUE

UNTIL TIL

(1) USING MESSAGES MSGS

WITH W

WITH A MAXIMUM OF WMAX

WITH ENTRIES WE

WITHIN WIN

X X

Note (1) - The letter S is optional

2-11

Table 2-1
(Continued)

SHORT FORM LIST 2

* ALPHABETICAL LISTING

* GOAL * SHORT FORM

ACTIVATE ACT

AFTER AFR

ALL ALL

AND AND

AND INDICATE RESTART LABELS

AND SAVE AS ASA

APPLY APA

ARE ARE

ASSIGN ASN

AVERAGE AVG

B B

BEGIN BGN

BETWEEN BTW

(1) CHARACTERS CHRS

CLOSE CLO

CLOSED CLD

(1) COLUMNS CS

CONCURRENTLY CNC

CRITICAL CTL

(1) DAYS DAYS

DECLARE DCL

DELAY DLY

DISABLE DBL

DISPLAY DSP

2-12

Table 2-1
(Continued)

ELSE ELSE

END END

ENTRIES E

ENTRY E

EQUAL TO EQ

EVERY EVY

(1) EXCEPTIONS XCPS

EXECUTE XEC

EXPAND XPD

EXPAND AND EXECUTE XAX

FALSE FALSE

FOR FOR

FREE FRE

FROM FROM

FUNCTIONS FNS

GO TO GTO

GREATER THAN GT

GREATER THAN OR EQUAL TO GEQ

(1) HRS HRS

IF IF

INHIBIT INH

IS IS

ISSUE ISU

LEAVE LVE

LESS THAN LT

LESS THAN OR EQUAL TO LEQ

2-13

Table 2-1
(Continued)

LET LET

MACRO MAC

MEASURE MSR

(1) MINS MINS

(1) MSECS MSECS

NOT NOT

NOT EQUAL TO NEQ

NUMBER NBR

NUMERIC LIST RC LST

NUMERIC TABLE NRC TAB

OCCURS

OFF OFF

ON ON

OPEN OPN

OR OR

PERFORM PER

PRESENT VALUE OF PV

PRINT PRT

PROGRAM PGM

QUANTITY QTY

QUANTITY LIST QTY LST

QUANTITY TABLE QTY TAB

READ RDE

READINGS OF RO

RECORD RCD

RELEASE RLS

2-14

Table 2-1
(Continued)

REPEAT REP

REPLACE RPL

REQUEST QT

RESUME RSM

RETURN RTN

REVISION REV

(1) ROWS RS

S S

(1) SECS SECS

SEND SDA

SET SET

STATE STA

STATE LIST STA LST

STATE TABLE STA TAB

STEP STEP

STOP STP

SUBROUTINE SUB

SYSTEM SYS

T T

TERMINATE TRM

TEXT TXT

TEXT LIST TXT LST

TEXT TABLE TXT TAB

THEN THEN or

THROUGH

2-15

Table 2-1
(Continued)

TIMES TMS

TITLED TTL

TO TO

TRUE TRUE

TURN ON TON

TURN OFF TFF

UNTIL TIL

USE USE

(1) USING MESSAGES MSGS

VERIFY VFY

WAIT WTE

WHEN WHN

WHEN INTERRUPT WNT

WITH W

WITH A MAXIMUM OF WMAX

WITH ENTRIES WE

WITHIN WIN

X X

Note (1) - The letter S is optional

2-16

CCCCCCCCCC 000000000000 NN NN VV VV RRRRRRRRRRR TTTTTTTTTTTT
CCCCCCCCCCC 000000000000 NNN NN VV VV RRRRRRRRRRRR TTTTTTTTTTTT
CC CC 00 00 NNNN NN VV VV RR RR TT
CC 00 00 NN NN NN VV VV RR RR TT
CC 00 00 NN NN NN VV VV RR RR TT
CC 00 00 NN NN NN VV VV RRRRRRRRRRRR TT
CC 00 00 NN NN NN VV VV RRRRRRRRRRR TT
CC 00 00 NN NN NN VV VV RR RR TT
CC 00 00 NN NNNN VV VV RR RR TT
CC CC 00 00 NN NNN VV VV RR RR TT
CCCCCCCCCCCC 000000000000 NN NN VVVV RR RR TT
CCCCCCCCCC 000000000000 NN N VV RR RR TT

AAAAAAAAAA
AAAAAAAAAAAA
AA AA
AA AA
AA AA
AAAAAAAAAAAA
AAAAAAAAAAAA
AA AA
AA AA
AA AA
AA AA
AA AA

Figure 2-1. (1 of 12)

GOAL 01 PAGE

GOAL COMPILER SOURCE RECORD LISTING

RECORD SOURCE RECORD

I BGN PGM (IUCOOL) REV 9;
2 * CONVERT ;
3 * TITLE (IU TCP WRITTEN IN A SHORT FORM DIALECT AND CONVERTED TO GOAL);

4 * DATE (5JULT73 ;
5 USE (MECMODELI;
6 USE (TERMINALS);
7 DCL TXT (PUMPON) WMAX 2 CHRS;
8
9 DCL QTY (STAGE INLET PRESS lI, (STAGE INLET PRESS 2) ;

10
11 OCL STA TAB (COOLING SYSTEM GN2 FILL ON SWITCH)

12 W 1 R AND 3 CS
13 TTL (ON),(OFF),(AUTO) WE

14 <MOO 1815>, ON , OFF , OFF ;

15 DCL STA TAB (WATER CONTROL VALVE CLOSED SWITCH)
16 W I R AND 3 CS
17 TTL (OPEN),(CLOSED),(AUTO) WE

18 <MOO 1814>, OFF , ON 0 ON

19 DCL STA TAB (IU COOLANT PUMP 1 ON SWITCH)
20 W I R AND 3 CS
21 TTL (ON),(OFF)I(AUTO) WE

22 <MOO 1817> ON 9 OFF , OFF ;

23 DCL STA TAB (IU COOLANT PUMP 2 ON SWITCH)

24 W 1I R AND 3 CS
25 TTL (ON),(OFF),(AUTO) WE

26 <MDO 1358>, ON , OFF 9 OFF;
27 DCL STA TAB (PRESSURE SWITCH ACTIVATED SW)
28 W I R AND 3 CS
29 TTL (ON),(OFF),(AUTO) WE

30 <MDO 1343>, ON , OFF , OFF ;
31 DCL STA TAB (IU COOLANT PUMP 1 AND 2 OFF SWITCH)

32 W I R AND 3 CS
33 TTL (ON), (OFF), (AUTO) WE
34 <MOO 1342>) ON , OFF , OFF ;
35 DCL STA TAB (HIGH PRESSURE REGULATOR ON SM)

36 W 2 RS AND 3 CS TTL
37 (LOWM) (HIGH), (AUTO) WE

38 <MDO 490> OFF , ON , OFF ,

39 <MOO 491>, ON , OFF , OFF ;

40
41 DSP TXT (.Y.THIS PROCEDURE WILL BRING THE)

42 TXT (.Y.GROUND COOLING UNITS AND THE),
43 TXT (.Y.IU THERMAL CONDITIONING SYSTEM),
44 TXT (.Y.TO OPERATING CONDITION), TO <CRT2-3>;

45 STP;
46
47 PER (GSCU POWER UP) REV 1;
48 DSP TXT (.C.BEGIN IU PNEUMATIC PANEL PREPS),
49 TXT (.C.USE OIS CHANNEL 154),
50 TXT (.C.REPORT TO CUNP WHEN COMPLETE), TO <CRT2-3>;

Fi urei.. (f 1.

01 GE

GOAL COMPILER SOURCE RECORD LISTING

RECORD SOURCE RECORD

51
52 S ON THE IU GROUND PNEUMATICS PANEL ;.
53
54 5110 RELEASE S 175;
55 VFY (SYSTEM INLET PRESSURE GAUGE) IS BTM 3300 PSIG AND 6000 PSIG
56 ELSE DSP XCPS (.R. GN2 SUPPLY NOT 3300 - 6000 PSIG)
57 TO <CRT2-5> AND STP 9 So10. S 115 ;
58 S115 AVG 6 RO (STAGE INLET PRESSURE GAUGE>
59 ASA (STAGE INLET PRESS 11) ;
60 S120 VFY <MANIFOLD PRESSURE GAUGE> IS LT 100 PSIG
61 ELSE DSP XCPS (.R.MANIFOLD PRESSURE NOT L.T. 100 PSI)
62 TO <CRT2> AND STP 5S120, S 130;
63 S130 SET (HIGH PRESSURE REGULATOR ON SW) FNS TO (LOW);
64 WTE 5 SECS;
65
66 S140 VFY <HIGH PRESSURE REG ON LAMP> IS OFF ELSE DSP XCPS
67 (.R.HIGH PRESS REG ON LAMP IS NOT OFF) TO <CRT2>
68 AND STP 9 S 140, S 150
69
70 $ IF MANIFOLD PRESSURE IS OUT OF TOLERANCE DO S 160;
71
72 S150 VFY <MANIFOLD PRESSURE GAUGE> IS BTW 1600 PSIG AND 1800 PSIG
73 ELSE DSP XCPS
74 (.R.MANIFOLD PRESS IS NOT 1700 +/-100) TO <CRT2-0>
75 AND GTO S160;
76 GTO 5 180;
77 5160 SET (HIGH PRESSURE REGULATOR ON SW) FNS TO (AUTO);
78 DLY 5 SECS;
79
80 SET (REDUNDANT PRESS REG ON SM> TO ON;
81 DSP TXT (.G.REDUNDANT PRESS REG ON COMMAND),
82 TxT (.G.HAS BEEN ISSUEDI, TO (CRT2> ;
83 WTE 5 SECS;
84
85 VFY <REDUNDANT PRESS REG 04 LAMP> IS ON ELSE DSP XCPS
86 (.R.REDUN PRESS REG LAMP IS NOT ON) TO <CRT2>
87 AND STP * S 160v S 170 ;
88 5170 AVG 3 RO (STAGE INLET PRESSURE GAUGE>
89 ASA (STAGE INLET PRESS 2);
90 IF (STAGE INLET PRESS 1) IS GEQ
91 (STAGE INLET PRESS 21 THEN GTO S 180;
92 DSP TXT (.Y.STAGE INLET PRESSURE INCREASEO),
93 TXT (.Y.HI PRESS REG READING WAS) (STAGE INLET PRESS 1),
94 TXT (.Y.REDUN PRESS REG READING WAS) (STAGE INLET PRESS 2),
95 TO (CRT2-O> ;
96 DSP TXT (.Y.PRESENT VALVE OF STAGE INLET PRESS),
97 TO <CRT2-10>;
98 S175 EVY 3 SECS CNC PER PGM (STAGE GN2 INLET PRESS) REV 1;
99 STP , O5110 S180;
100 S180 RLS S175 ;

Figure 2-1. (3 of 12)

GOAL 01 PAGE 3

GOAL COMPILER SOURCE RECORD LISTING

RECORD SOURCE RECORD

101 SET <SUPPLY SYSTEM ON SW> TO ON;
102 DLY 5 SECS;
103
104 VFY <SUPPLY SYSTEM ON LAMP> IS ON ELSE DSP XCPS
105 (.R.SUPPLY SYSTEM ON LAMP IS NOT ON)
106 TO <CRT2-3> AND STP, S180, 5190;
107 S190 RLS S195;
108 VFY <STAGE INLET PRESSURE GAUGE> IS BTW 1600 PSIG AND 1800 PSIG
109 ELSE DSP XCPS
110 (.R.STAGE INLET PRESS NOT 1600-1800 PSI) TO <CRT2-9>
111 AND GTO S194;
112 GTO S 200;
113 S194 DSP TXT (.Y.STAGE INLET PRESSURE),
114 TO <CRT2-10>;
115 S195 EVY 3 SECS CNC PER PGM (STAGE GN2 INLET PRESS) REV 1;
116 STP , S190. S200;
117 S200 RLS S195;
118 DSP TXT (.G.IU PNEUMATICS PANEL PREPS COMPLETE),
119 TXT (.G.NOTIFY CUNP ON OIS CHANNEL 154), TO <CRT2-0>;
120 TRM;
121 END PGM;

Figure 2-1. (4 of 12)

01 IrGEl

GOAL COMPILER EXPANDED SOURCE STATEMENT LISTING

STMT EXPANDED SOURCE STATEMENT

1 BGN PGM (IUCOOL) REV 9;
2 USE (MECMODEL);
3 USE (TERMINALS);
4 DECLARE TEXT (PUMPON) WITH A MAXIMUM OF 2 CHARACTERS;

5 DECLARE QUANTITY (STAGE INLET PRESS 1), (STAGE INLET PRESS 2)

6 DECLARE STATE TABLE (COOLING SYSTEM GN2 FILL ON SWITCH)
WITH 1 ROW AND 3 COLUMNS
TITLED (ON)(OFF),(AUTO) WITH ENTRIES
<MDO 1815>, ON , OFF , OFF ;

7 DECLARE STATE TABLE (WATER CONTROL VALVE CLOSED SWITCH)
WITH 1 ROW AND 3 COLUMNS
TITLED (OPENi)(CLOSED),(AUTO) WITH ENTRIES
<MDO 1814> OFF , ON , ON ;

8 DECLARE STATE TABLE (IU COOLANT PUMP I ON SWITCH)
WITH I ROW AND 3 COLUMNS
TITLED (ON),(OFF),(AUTO) WITH ENTRIES
<MDO 1817> ON , OFF , OFF ;

9 DECLARE STATE TABLE (IU COOLANT PUMP 2 ON SWITCH)
WITH 1 ROW AND 3 COLUMNS
TITLED (ON),(OFF)qlAUTO) WITH ENTRIES
<MDO 1358> ON , OFF , OFF ;

10 DECLARE STATE TABLE (PRESSURE SWITCH ACTIVATED SW)
WITH 1 ROW AND 3 COLUMNS
TITLED (ON),(OFFI#(AUTO) WITH ENTRIES
<MDO 1343>, ON , OFF , OFF ;

11 DECLARE STATE TABLE (IU COOLANT PUMP I AND 2 OFF SWITCH)
WITH I ROW AND 3 COLUMNS
TITLED (ON)t (OFF), (AUTO) WITH ENTRIES
<MDO 1342>) ON , OFF , OFF ;

12 DECLARE STATE TABLE (HIGH PRESSURE REGULATOR ON SW)
WITH 2 ROWS AND 3 COLUMNS TITLED

(LOW), (HIGH), (AUTO) WITH ENTRIES
<MDO 490>, OFF , ON , OFF ,
<MOO 491>. ON , OFF , OFF

Figure 2-1. (5 of 12)

TCP WRITTEN IN A SHORT FORM DIALECT AND CONVERTED TO GOAL 5JUL73 GOAL 01 PAGE 2

GOAL COMPILER EXPANDED SOURCE STATEMENT LISTING

STMT EXPANDED SOURCE STATEMENT

$ ********** BEGIN OPERATING STEPS *44********

13 DISPLAY TEXT (.Y.THIS PROCEDURE WILL BRING THE)

TEXT (.Y.GROUND COOLING UNITS AND THE),

TEXT (.Y.IU THERMAL CONDITIONING SYSTEM)t

TEXT (.Y.TO OPERATING CONDITION), TO <CRT2-3>;

14 STOP;

15 PERFORM (GSCU POWER UP) REVISION 1;

16 DISPLAY TEXT (.C.BEGIN IU PNEUMATIC PANEL PREPS),
TEXT (.C.USE OIS CHANNEL 154),

TEXT I.C.REPORT TO CUNP WHEN COMPLETE), TO <CRT2-3>;

$ ON THE IU GROUND PNEUMATICS PANEL

17 STEPI10 RELEASE STEP 175;

18 VERIFY <SYSTEM INLET PRESSURE GAUGE> IS BETWEEN 3300 PSIG AND 6000 PSIG

ELSE DISPLAY EXCEPTIONS (.R. GN2 SUPPLY NOT 3300 - 6000 PSIG)

TO <CRT2-5> AND STOP AND INDICATE RESTART LABELS STEP110, STEP 115

19 STEP115 AVERAGE 6 READINGS OF <STAGE INLET PRESSURE GAUGE>

AND SAVE AS ISTAGE INLET PRESS 1) ;

20 STEP120 VERIFY <MANIFOLD PRESSURE GAUGE> IS LESS THAN 100 PSIG

ELSE DISPLAY EXCEPTIONS (.R.MANIFOLD PRESSURE NOT L.T. 100 PSI)

NTO <CRT2> AND STOP AND INDICATE RESTART LABELS STEP120, STEP 130;

21 STEPI30 SET (HIGH PRESSURE REGULATOR ON SW) FUNCTIONS TO (LOW);

N22 WAIT 5 SECS;

23 STEP140 VERIFY <HIGH PRESSURE REG ON LAMP> IS OFF ELSE DISPLAY EXCEPTIONS

(.R.HIGH PRESS REG ON LAMP IS NOT OFF) TO <CRT2>

AND STOP AND INDICATE RESTART LABELS STEP 140, STEP 150;

S IF MANIFOLD PRESSURE IS OUT OF TOLERANCE DO S 160;

24 STEP150 VERIFY <MANIFOLD PRESSURE GAUGE> IS BETWEEN 1600 PSIG AND 1800 PSIG

ELSE DISPLAY EXCEPTIONS
(.R.MANIFOLD PRESS IS NOT 1700 +/-100) TO <CRT2-O>

AND GO TO STEP160;

25 GO TO STEP 180
26 STEP160 SET (HIGH PRESSURE REGULATOR ON SW) FUNCTIONS TO (AUTO);

27 DELAY 5 SECS;

28 SET <REDUNDANT PRESS REG ON SW> TO ON;

29 DISPLAY TEXT (.G.REDUNDANT PRESS REG ON COMMAND),
TEXT (.G.HAS BEEN ISSUED), TO <CRT2>

30 WAIT 5 SECS;

31 VERIFY <REDUNDANT PRESS REG ON LAMP> IS ON ELSE DISPLAY EXCEPTIONS

(.R.REDUN PRESS REG LAMP IS NOT ON) TO <CRT2>

AND STOP AND INDICATE RESTART LABELS STEP 160, STEP 170 ;

32 STEP170 AVERAGE 3 READINGS OF <STAGE INLET PRESSURE GAUGE>

Figure 2-1. (6 of 12)

Swi N IM~ SH IFOR| gALE ND IlIERTI O GII ULi GI 01 I GE M

GOAL COMPILER EXPANDED SOURCE STATEMENT LISTING

STMT EXPANDED SOURCE STATEMENT

AND SAVE AS (STAGE INLET PRESS 2);
33 IF (STAGE INLET PRESS I) IS GREATER THAN OR EQUAL TO

(STAGE INLET PRESS 2) THEN GO TO STEP 180;
34 DISPLAY TEXT (.Y.STAGE INLET PRESSURE INCREASED)t

TEXT (.Y.HI PRESS REG READING WAS) (STAGE INLET PRESS I),
TEXT (.Y.REDUN PRESS REG READING WAS) (STAGE INLET PRESS 2),
TO <CRT2-0> ;

35 DISPLAY TEXT (.Y.PRESENT VALVE OF STAGE INLET PRESS),
TO <CRT2-10>;

36 STEP175 EVERY 3 SECS CONCURRENTLY PERFORM PROGRAM ISTAGE GN2 INLET PRESS) REVISION 1;
37 STOP AND INDICATE RESTART LABELS STEP110 STEPI80;
38 STEP180 RELEASE STEP175 ;
39 SET <SUPPLY SYSTEM ON SW> TO ON;
40 DELAY 5 SECS;

41 VERIFY <SUPPLY SYSTEM ON LAMP> IS ON ELSE DISPLAY EXCEPTIONS
(.R.SUPPLY SYSTEM ON LAMP IS NOT ON)
TO <CRT2-3> AND STOP AND INDICATE RESTART LABELS STEP180, STEP90;

42 STEP190 RELEASE STEPI95;
43 VERIFY <STAGE INLET PRESSURE GAUGE> IS BETWEEN 1600 PSIG AND 1800 PSIG

ELSE DISPLAY EXCEPTIONS
(.R.STAGE INLET PRESS NOT 1600-1800 PSI) TO <CRT2-9>
AND GO TO STEP194;

44 GO TO STEP 200;
45 STEP194 DISPLAY TEXT (.Y.STAGE INLET PRESSURE),

TO <CRT2-10>;
46 STEP195 EVERY 3 SECS CONCURRENTLY PERFORM PROGRAM (STAGE GN2 INLET PRESS) REVISION 1;
47 STOP AND INDICATE RESTART LABELS STEP190, STEP200;
48 STEP200 RELEASE STEP195;
49 DISPLAY TEXT (.G.IU PNEUMATICS PANEL PREPS COMPLETE),

TEXT (.G.NOTIFY CUNP ON OIS CHANNEL 154), TO <CRT2-0>;
50 TERMINATE;
51 END PROGRAM;

Figure 2-1. (7 of 12)

GOAL 01 PAGE

INTERNAL NAME CROSS-REFERENCE LISTING

INTERNAL NAME TYPE SIZE DEFINED AT REFERENCED AT

(AUTO) COLUMN #ROWS 0006 0026

(CLOSED) COLUMN #ROWS 0007 ** UNREFERENCED **
ICOOLINGSYSTEMGN2FILLONSWITCH) STATE 01X03 0006 ** UNREFERENCED **
(HIGHPRESSUREREGULATORONSW) STATE 02X03 0012 0021 0026

(HIGH) COLUMN #ROWS 0012 ** UNREFERENCED **

(IUCOOLANTPUMP1AND20FFSWITCH) STATE 01X03 0011 ** UNREFERENCED **

(IUCOOLANTPUMPIONSWITCH) STATE 01X03 0008 ** UNREFERENCED **

(IUCOOLANTPUMP2ONSWITCH) STATE 01X03 0009 ** UNREFERENCED **
(LOW) COLUMN #ROWS 0012 0021

(OFF) COLUMN #ROWS 0006 ** UNREFERENCED **

(ON) COLUMN #ROWS 0006 ** UNREFERENCED **

(OPEN) COLUMN #ROWS 0007 ** UNREFERENCED **
(PRESSURESWITCHACTIVATEDSW) STATE 01X03 0010 ** UNREFERENCED **
(PUMPON) TEXT 00001 0004 ** UNREFERENCED **
(STAGEINLETPRESSI) QUANTITY 00001 0005 0019 0033 0034

(STAGEINLETPRESS2) QUANTITY 00001 0005 0032 0033 0034

(WATERCONTROLVALVECLOSEDSWITCH) STATE 01X03 0007 ** UNREFERENCED **

Figure 2-1. (8 of 12)

GOAL 01 PAGE

STATEMENT LABEL CROSS-REFERENCE LISTING

LABEL DEFINED AT REFERENCED AT

S 0110 0017 0018 0037
5 0115 0019 0018
S 0120 0020 0020
S 0130 0021 0020
S 0140 0023 0023
S 0150 0024 0023
S 0160 0026 0024 0031
S 0170 0032 0031
5 0175 0036 0017 0038
S 0180 0036 0025 0033 0037 0041
S 0190 0042 0041 0047
S 0194 0045 0043
S 0195 0046 0042 0048
s 0200 0048 0044 0047

Figure 2-1. (9 of 12)

GOAL 01 PAGE

FUNCTION DESIGNATOR CROSS-REFERENCE LISTING

DATA BANK NAME DATA BANK NUMBER

(MECMODEL) 0001
(TERMINALS) 0002

Figure 2-1. (10 of 12)

GOAL 01 PAGE 2

FUNCTION DESIGNATOR CROSS-REFERENCE LISTING

FUNCTION DESIGNATOR TYPE ADDRS DATA ONK REFERENCED AT

<CRT2> SYSTEM 1/0 00002 0002 0020 0023 0029 0031
<CRT2-O> SYSTEM I/O 00200 0002 0024 0034 0049
<CRT2-10> SYSTEM I/0 00210 0002 0035 0045<CRT2-3> SYSTEM I/O 00203 0002 0013 0016 0041(CRT2-5> SYSTEM 1/0 00205 0002 0018<CRT2-9> SYSTEM 1/O 00209 0002 0043<HIGHPRESSUREREGONLAMP> SENSOR DISCRETE 00292 0001 0023
<MANIFOLDPRESSUREGAUGE> SENSOR ANALOG 00123 0001 0020 0024<ND01342> LOAD DISCRETE 00904 0001 0011
<MD01343> LOAD DISCRETE 00892 0001 0010<ND01358> LOAD DISCRETE 00902 0001 0009
<MDO1814> LOAD DISCRETE 00860 0001 0007<MDO1815> LOAD DISCRETE 00916 0001 0006<MDl0187> LOAD DISCRETE 00900 0001 0008<MD0490> LOAD DISCRETE 00320 0001 0012<MD0491> LOAD DISCRETE 00248 0001 0012<REDUNDANTPRESSREGONLAMP> SENSOR DISCRETE 00087 0001 0031
<REDUNDANTPRESSREGONSW> LOAD DISCRETE 00602 0001 0028<STAGEINLETPRESSUREGAUGE> SENSOR ANALOG 00148 0001 0019 0032 0043<SUPPLYSYSTEMONLAMP> SENSOR DISCRETE 00028 0001 0041<SUPPLYSYSTEMONSW> LOAD DISCRETE 00572 0001 0039<SYSTEMINLETPRESSUREGAUGE> SENSOR ANALOG 00111 0001 0018

Figure 2-1. (11 of 12)

GOAL 01 PAGE.

GOAL COMPILER DIAGNOSTIC SUMMARY

WARNINGS.

THE FOLLOWING INTERNAL NAMES WERE UNREFERENCED :

(CLOSED) (COOLINGSYSTEMGN2FILLONSWITCH) (HIGH)
(IUCOOLANTPUMPIAND20FFSWITCH) (IUCOOLANTPUMPIONSWITCH) (IUCOOLANTPUMP2ONSWITCH)
(OFF) (ON) (OPEN)
(PRESSURESWITCHACTIVATEDSW) (PUMPON) (WATERCONTROLVALVECLOSEDSWITCH)

END OF DIAGNOSTICS.

TOTAL NUMBER OF SOURCE RECORDS: 121
TOTAL NUMBER OF STATEMENTS: 51
TOTAL NUMBER OF WARNINGS: 12
TOTAL NUMBER OF ERRORS : 0
HIGHEST CONDITION CODE WAS 4

rF

3

Figure 2-1. (12 of 12)

SECTION 3.0

ENGINEERING UNITS TECHNIQUES

T

3.1 PURPOSE OF DOCUMENT

This document represents an effort to define the future role of
engineering units in the GOAL language. The advantages and disad-
vantages will be discussed and the necessary ground rules and
conventions will be identified.

3.1.1 Role of Engineering Units

The present use of engineering units is for readability only. No
attempt has been made to automatically scale units or check for proper
dimensional operations. As to the future of engineering units, this
document will identify a recommended system of engineering units and
evaluate methods for incorporating the required processing techniques
into the GOAL Compiler. Items that affect an Operating System will
also be identified.

3.1.2 Advantages

There are several advantages to be gained by incorporating engineering
units into the GOAL System. The major advantages are associated with
readability, automatic unit scaling, and usage validation. Other benefits
include validation of subroutine parameters, and the validation of console
inputs to the on-line system.

3.1.3 Disadvantages

In order for engineering units to be properly scaled and validated,
additional restrictions must be imposed on the procedure writer. To
ensure clear and unambiguous meaning of GOAL statements using units,
comprehensive and rigorous tests must be made by the compiler. Once
a procedure writer has decided to use engineering units, he must con-
tinue using them to the completion of the procedure.

3.1.4 Ground Rules

This document will identify the conventions and guidelines required to
implement engineering units in the GOAL Language. Problem areas related
to this effort will be discussed.

3.2 TECHNICAL APPROACH

The analysis of engineering units techniques in the GOAL Language will
be presented according to the following outline:

3.2.1 System of Units

A candidate set of engineering units is provided to support operations
involving electrical, mechanical, and thermal terminology. This set is
identified in Table 3-1. It is described in further detail in Section
3.3.

3-1

3.2.2 Compiler and Operating System Ground Rules

The use of engineering units is discussed for the various GOAL Language
Statements in which they occur. Assumptions regarding real time operations
are described. This analysis is given in Section 3.7.

3.2.3 Potential Problem Areas

Problem Areas related to the use of engineering units in the GOAL Language
are described in Section 3.12.

3.2.4 Implementation Techniques

A phased approach for implementation of engineering units with the GOAL

Compiler is given in Section 3.13.

3.3 SYSTEM OF UNITS

3.3.1 Conventional Systems

The conventional systems, English and Metric, are discussed and a technique
is described for conversion to an internal working unit system.

3.3.2 English Systems and Metric Systems Unit Definitions

In any logical system of units it is necessary at the beginning to assume
certain units arbitrarily. In each of the commonly used systems there
are three fundamental units. The fundamental quantities in the inter-
national scientific system are length, mass, and time. In the English
system the fundamentalquantities are length, force, and time. A com-
parison of two forms of the scientific system and one of the English
system is as follows:

MKS CGS ENGLISH (f Ibm s)
Quantity System System System

Length Meter Centimeter Foot

Mass Kilogram Gram Lb Mass

Density Kilogram/Meter3 Gram/Centimeter 3 Lb Mass/Foot3

Force Newton Dyne Poundal

Work (energy) Joule Erg Foot Poundal

Power Watt Erg/Sec Poundal/Sec

Time Second Second Second

3-2

As shown in the table the differences between the three systems, other
than the assumption of the arbitrary units, is the choice of the funda-
mental quantities. In CGS and MKS the unit of mass is a fundamental
unit while that of force is a derived one.

3.3.3 Conversion Techniques

A variable expressed in the units of one system can be converted to
equivalent units in another system. The conversion is accomplished by
using a constant relationship between the two systems as a multiplier
or divisor. Using the MKS system as a baseline, the conversion constants
for the CGS and f Ibm s systems are as follows:

Quantity MKS CGS f Ibm s

Length 1 Meter 102 CM 3.281 ft

Mass 1 Kilogram 103 Gram 2.205 lbm

Density 1 K/M3 10-3 GM/cm3 62.43x10-3 ibm/ft3

Force 1 Newton 105 dyne 7.015 poundal

Work (Energy) 1 Joule 107 erg 23.02 ft poundal

Power 1 Watt 107 erg/sec 23.02 ft poundal/sec

A simple conversion example using the quantity length is as follows:

Convert 6 feet to meters

6 feet = 6 feet i 3.281 feet/meter = 1.829 meters

The conversion technique can be easily applied to convert units from
various systems to units of a single system.

3.4 SPECIALIZED SYSTEMS

The principal system units discussed thus far have been those of the
Mechanical System. This section will include those units associated
with the Electrical and Thermal Systems.

3.4.1 Electrical Systems

There are eight or ten different systems of electrical and magnetic units
which are in common use. Each system is based on a choice of a constant
of proportionality in an experimentally verified physical law. For the
purpose of this paper we will limit our discussion to three of the more
common systems. The CGS electrostatic system (esu) units are derived

3-3

from Coulomb's law which says that the force, f, between two electrical
charges, qi and q, separated by a distance r in empty space is directly
proportion 1 to the product of the charges and inversely proportional to
the square of the distance between them.

f = K q1 q2 /r 2

where K is a constant chosen as unity and dimensionless.

The CGS electromagnetic system (emu) units are derived from the law of
attraction between currents. If two currents of magnitude Il and I9
flow in long parallel wires, separated by a distance d, they attraci
each other with a force per unit length given by

f = K Il 12/d

where K is a constant chosen as 2 and dimensionless.

The two systems discussed thus far have used CGS mechanical units. By
using MKS mechanical units, we are able to define a system of units that
coincide closely with the practical system of units which grew up in the
nineteenth century. The volt, ampere, henry, farad, and ohm are all units
of the MKS system.

Using the MKS system of electrical units as a baseline, the conversion
constants and the units associated with each are illustrated in the
following table:

Quantity MKS esu electrostatic emu electromagnetic

Charge 1 Coulomb 2.998x10 9 Statcoulomb .1 Abcoulomb

Potential 1 Volt 3.336x10-2 Statvolt 108 Abvolt
Di fference

Current 1 Ampere 2.998x109 Statampere .1 Abampere

Resistance 1 Ohm 1.1126x10-12 Statohm lO9 Abohm

Power 1 Watt 107 erg/sec 107 erg/sec

Inductance 1 Henry 1.1126x10 -12 Stathenry 109 cm

Capacitance 1 Farad 8.988x101 cm 10-9 Abfarad

3.4.2 Mechanical Systems

The mechanical units have been discussed previously. (See the table
of MKS, CGS, and English units in Section 3.3.3.

3-4

3.4.3 Thermal Systems

Thermal measurements involve the specification of temperature. Two
temperature scales are in common use and both are defined in terms
of measurements made with a mercury thermometer and both having the
freezing and boiling point of pure water at standard atmospheric
pressure as the fixed points. The Centigrade scale uses 00 and 1000
while the Fahrenheit scale uses 320 and 2120. The scales are extended
by the Kelvin or Absolute temperature scale and the Rankine temperature
scale. The Kelvin scale is independent of the properties of any partic-
ular substance except that the difference between the boiling and freezing
point of water will be 1000K. The Zero value is the lowest limit temper-
ature that can be approached but never reached. The Rankine scale
corresponds to the Kelvin scale, bgt is based on absolute zero of the
Fahrenheit system. Using the MKS C System as the baseline, the relation-
ships among thermal units are as follows:

Quantity MKS oC MKS OK CGSoK f lbms OF f lbms OR

(Temperature o1C 10K 1K 1. 800F 1. 80R
Difference)

Temperature XOC (273.16+X)oK (273.16+X) F(32+9X/5)oF (491.7+9X/5)OF

Energy 1 joule 1 joule 107erg 9.478X10-4 BTU 9.478X10 -4 BTU

3.4.4 Compatibility Between Systems

Compatibility between units of the same systems (Mechanical, Electrical,
and Thermal), can be maintained if the units are scaled to a common
internal working unit base. Working units will be discussed in Section 3.6.

3.5 AMBIGUITIES

Ambiguities can be created by the use of engineering units if the units
are used only part of the time, if they are used incorrectly, or if the
user doesn't know what internal working units are being used.

Ambiguities can also be created by the order in which arithmetic opera-
tions are performed. This problem will be discussed in greater detail
in Section 3.12 (Potential Problem Areas)

3.5.1 Mass vs. Force Conventions

This ambiguity arises in the specification of Mass or Force in the English
system of units. If the pound unit is used a compiler will not be able to
determine if it is pounds force or pounds mass.

3-b

Specific engineering unit symbols will have to be defined for mass
and force units in order to provide the GOAL procedure writer with
meaningful results.

3.5.2 On, Closed, True vs. Off, Open, False

These operators have been discussed at great length and it is generally
agreed that the ambiguity is created by the Mechanical/Electrical System
definitions. As with force and mass a convention must be established
regarding their use.

3.5.3 Absolute vs. Relative Temperature and Pressure

The Thermal System units involve, in addition to the mechanical fundamental
quantities of mass, length, and time (m, 1, and t), the specification of
temperature (e). The present list of engineering units in the Syntax
diagram handbook contains the capability for relative or absolute pressure,
but does not have the capability for temperature expression. Absolute
measurements are with respect to the null condition, while relative
measurements are expressed as the difference between two limits, (i.e.,
1000A absolute is very cold, 100 Ao relative is the difference between
the freezing and boiling point of water). Additional units will have
to be defined for the representation of Absolute and Relative temperature
if they are to be included in the list of legal Engineering units.

3.6 WORKING UNITS

If the GOAL System is to provide the Procedure Writers with the capability
to use different engineering units within the same statement, all units
will have to be converted to a common denominator. This suggests the use
of a system of internal working units. In selecting a set of internal
working units it is highly desirable that the system consists of units
that are common to Mechanical, Electrical, or Thermal Systems, and are
of sufficient size to handle both large and small units. The system that
seems best suited to meet this criteria is the MKS system. This system
is larger than the CGS system and is about the same size as the English
System. There is a distinct advantage in the electrical system units in
the MKS system. Nearly all of these quantities evolved during the nine-
teenth century and units such as the volt, ampere, henry, farad, and ohm
are already in the MKS system. The MKS is already the standard system
in most all but the English speaking countries today. Some of these
countries are converting to the metric system and others are studying the
problem. This seems to be the logical system of internal working units
for the GOAL System. The procedure writers should be free to use any
system of units that they desire, but if automatic scaling of units and
usage validation are to be included in the GOAL System, it is recommended
that the MKS system units be adopted as the internal working unit.

3-b

3.7 COMPILER AND OPERATING SYSTEM GROUND RULES

This section identifies the various ways that engineering units can be
used in the GOAL statements.

3.7.1 Quantity Declaratives

These statements are used to identify specific internal names as quantity
variables for the GOAL Compiler. The quantity declaration will enable the
compiler to validate all statements that use the variable.

3.7.1.1 Initialized Quantity Variables

When a quantity variable is declared it may be assigned initial values.
These are expressed as a numeric value followed by some engineering units.
These units are used to determine the conversion required to obtain the
initial values in the MKS internal working system.

3.7.1.2 Uninitialized Quantity Variables

If a quantity variable is not assigned an initial value it may still be
given engineering units which will be used to validate its usage. In
this case the numeric value is omitted in the DECLARE statement. This
will enable the compiler to validate the statements that use the variable.

3.7.1.3 Dimensionless Quantities

If a quantity variable is not assigned engineering units, it is considered
to be a dimensionless quantity and it is assigned 'null' units.

These special quantities will be discussed in Section 3.12.

3.8 ARITHMETICAL EXPRESSIONS

3.8.1 Balanced Dimensions

Arithmetic operations must be performed using engineering units with
compatible dimensions. It must be legal to perform arithmetic oper-
ations with all types of units; however, the resulting units must be
equal to the declared quantity units for the variable to the left of
the expression. For expressions that perform either addition or sub-
traction it is a simple matter to verify that the dimensions are the
same. For example, it is legal to add or subtract units whose fundamental
quantities of length, mass, or time (1, m, t) are identical. The problem
occurs when multiplication and division are performed within an expression.
These two arithmetical operations create composite units.

3.8.2 Composite Units

When unlike units are multiplied or divided the resulting composite units
may or may not be legal units. The creation of composite units will depend
upon the order in which arithmetical expressions are evaluated. This
problem will be discussed in Section 3.12.

3-7

3.9 COMPARISON TESTS

3.9.1 Compatible Comparands

All comparison tests should be performed on like comparands. This is a
continuation of the current GOAL compiler rule that unlike Function
Designators cannot be used in comparison tests. Quantity variables used
in comparison tests will have to have the same fundamental quantities,
but not necessarily the same units. For example, it should be legal to
compare inches to feet because the same fundamental quantity, length (1)
is common to both variables.

3.9.2 Required Scaling

If internal working units are in a common system such as MKS, then the
GOAL Compiler and online executive system can perform the required scaling
for quantity variables. If variables, other than quantities, are used for
comparison tests or I/O operations, the procedure writer will be respon-
sible for proper scaling.

3.10 ANALOG I/0

3.10.1 Calibration and Scaling

If the engineering unit theme is to be followed throughout the GOAL system,
analog values should be automatically scaled for I/O operations. In order
to convert the analog value to the proper value, the executive system must
have access to the calibration data for measurements and the engineering
unit identifiers for each measurement. With this data, the programs could
use actual units rather than 0-5 volts or some other scale.

3.11 KEYBOARD AND DISPLAY I/O

3.11.1 Validation and Scaling

Keyboard input can be validated by checking engineering units specified
for input parameters. If the GOAL procedure is expecting Volts for input
the units can be tested and scaled before the parameter is passed to the
program. Output can be handled in the same way except that the units
could be optional. If no units were specified, the executive could scale
to the MKS unit and output the data. If units were specified, the units
will be converted to that specified.

3.12 POTENTIAL PROBLEM AREAS

3.12.1 Special Quantities

Special consideration will have to be made for dimensionless quantities.
Items such as specific gravity, specific heat, 1, e and others which may
require special unit designations when automatic scaling and usage vali-
dation are to be performed. The potential problem area is associated.

with mixing numeric data or constants with declared quantities. The
compiler will be unable to verify arithmetic expressions if there are
no restrictions placed upon the variables allowed in the expressions.

3.12.2 Composite Units

Composite units may be generated during the evaluation of arithmetic
expressions or when arithmetic calculations are performed over the
course of several GOAL statements. The composite units which are gener-
ated during the course of evaluation of an arithmetic expression may be
the most difficult to implement. These operations will be dependent
upon the order of variables as coded by the procedure writer. The entire
expression may have to be evaluated and the resulting units compared to
the defined units for the variable to the left of the expression.

A method will have to be identified which will allow a GOAL Procedure
writer to identify units which are not included in the accepted list
of engineering units. A suggested method for defining composite units
is shown in Table 3-3.

3.12.3 Temporary torage of Data

Temporary storage of data should not cause any problems with engineering
units since all variables must be declared. The GOAL Procedure writer
will have to be aware of the problems identified with composite units
when temporary storage locations are defined.

3.12.4 Resolution and Precision

By examination of conversion factor tables for conversion from other
systems to the MKS system, six fractional decimal places should be
sufficient for units which are expressed in "micro" units. The degree
of accurary will probably be determined by the computer word size on
which the GOAL system is implemented. Six fractional decimal places
should be the smallest number considered. The number of integer digits
required must be capable of supporting the "mega" unit. This requires
at least 6 digits plus the significant digits. This would imply a
minimum of 9 or 10 digits to the left of the decimal. These require-
ments are within the capabilities of the floating point registers of
many of the larger computer systems.

3.13 IMPLEMENTATION TECHNIQUES

3.13.1 Basic Methods

The GOAL Compiler as it exists at the present time is considered the
basic system. The engineering units listed in the GOAL Syntax Diagram
Handbook may be used to enhance the readability of a GOAL Procedure.
A cursory validation is performed by the Compiler to insure that the
engineering units used are defined. If an engineering unit is not
defined in the GOAL Compiler, it will be flagged as an error. The basic
method consists of a definition of all legal engineering units, but
values are not scaled to compatible units and operations are not
validated.

3-9

3.13.2 Automatic Scaling

Automatic scaling of units to internal working units is the next suggested
step for the implementation of engineering units. The internal working
unit system recommended in Section 3.6 is the MKS System. In addition to
recognizing the various types of engineering units as is presently done in
the basic system the quantities will be scaled up or down in order to cor-
respond to MKS Units. This operation will be performed during compilation,
but the on-line system would have to recognize that all units were MKS. No
validating of operations would be performed and it would be possible to add
volts to amps and get PSI for a result.

3.13.3 Dimensional Validation

The third phase of implementation is a continuation of Phase Two. Auto-
matic scaling would be performed as suggested in Section 3.13.2. In addition,
unit usage will be validated by the compiler.

A usage validation technique can be implemented using three fundamental
quantities previously identified, length, mass, and time (1, m, t). The
three fundamental quantities would be sufficient if either the mechanical
or electrical systems were to be implemented separately; however, some of
the fundamental quantities are identical in the two systems. If we consider
the permeability of a vacuum, p, as a fourth fundamental quantity in the
electrical system, we can then distinguish between the mechanical and
electrical systems. There is one other dimension in the thermal system
which is variable and that is temperature, o.

If the five defined fundamental quantities are used to define each engi-
neering unit in the GOAL system, all arithmetic operations can be
validated by addition, subtraction, or comparison of the subscripts of
the fundamental quantities. The operations would be performed according
to the following rules:

1. Addition/Subtraction - the values of the subscripts of the five
fundamental quantities must be identical for the operation to be legal.

2. Multiplication - the values of the five fundamental quantities
subscripts of the multiplier will be added to those of the multiplicand
to form the subscripts of the product. The resulting five fundamental
quantity values of the product must be identical to those of one of the
engineering units defined in the GOAL system.

3. Division - the values of the five fundamental quantity sub-
scripts of the divisor will be subtracted from those of the dividend
to form the subscripts of the quotient. The resulting fundamental
quantity values of the quotient must be identical to those of one
of the engineering units defined in the GOAL System.

3-10

With these rules, the user must be aware of the sequence of multiple
operations. Intermediate units may be required for operations that
are performed over several statements.

The validation can be performed by reducing the operations to a Polish
notation string and performing the indicated operations on the fundamen-
tal quantity vectors during the compilation phase. Inconsistencies can
be detected at this time. Table 3-2 contains the GOAL Engineering units
expressed as the five fundamental quantities. Table 3-3 contains
examples of unit validation using this technique.

3-11

ENGINEERING UNITS

FUNCTION BASIC
TYPE UNIT X10 3 X10 6 X10 - 3 X10 - 6

VOLT VOLT KILOVOLT MEGAVOLT MILLIVOLT MICROVOLT

CURRENT AMPERE MILLIAMP MICROAMP

FREQUENCY HERTZ KILOHERTZ MEGAHERTZ

RESISTANCE OHM KILOHM MEGAOHM

INDUCTANCE henry Milli henry Mi crohenry

CAPACITANCE farad Microfarad

POWER WATT KILOWATT Milliwatt Microwatt

PRESSURE lbs/in 2

millibars

in of Hg

millimeters of Hg

DISTANCE inch

foot

meter kilometer megameter millimeter micrometer

nautical mile

ENGINEERING UNITS

FUNCTION BASIC
TYPE UNIT X10 3 X0 6 X10-3 X10 -6

VELOCITY feet/sec

meters/sec

knot

mach. no.

ANGLE degree

arc min r

arc sec

radian

revolution

(D

TEMPERATURE degrees centigrade

degrees fahrenheit

degrees kelvin

MASS kilogram gram

slug

ENGINEERING UNITS

FUNCTION BASIC
TYPE UNIT X103 X10 6 X10-3 X10 - 6

DENSITY K/M3 gm/cm 3

Slug/ft 3

FORCE Newton

poundal

WORK Joule

(D
-.

(D

TABLE 3-2

DIMENSIONAL FORMULAE

The dimensional formulae are represented by the three fundamental

quantities, length, mass, and time (1, m, t) plus the two additional

defined quantities temperature (e) and the dielectric constant of a

vacuum ().

Unit Name Equivalent Units

LENGTH 1

MASS m

TIME t

TEMPERATURE e

AREA 12

VOLUME 13

VELOCITY i t-

ACCELERATION 1 t 2

DENSITY ml 3

FLOW 13 t-1

FORCE mlt - 2

PRESSURE mlt-2

WORK and ENERGY ml2 t 2

POWER (WATTS) ml2 t 3

VISCOSITY
ml-lt-1

KINEMATIC VISCOSITY

SURFACE TENSION mt 2

ROTARY POWER

113-15

3-15

TABLE 3-2 (Continued)

Unit Name Equivalent Unit

QUANTITY OR CHARGE 1-1/2ml/211/2

CURRENT v-1/2ml/ 211/2t-1

POTENTIAL pl/2m/213/2t-2

RESISTANCE 1It-1

VOLUME RESISTIVITY P12t -1

MASS RESISTIVITY pml- 1t-1

VOLUME CONDUCTIVITY ,'11-2t

MASS CONDUCTIVITY ~-Im-llt

CAPACITANCE P-11-1t2

INDUCTANCE Pi

THERMOELECTRIC POWER p1/2m1/213/2t-2e-1

FLUX OF MAGNETIC INDUCTION 1/2m1/ 213/2t-1

MAGNETIC FIELD INTENSITY -1/2m/21-1/2t-1

MAGNETIC POTENTIAL W-1/2ml/2 11/ 2t-I

RELUCTANCE 1-11-1

MAGNETIC INDUCTION p1/ 2ml/21-1/2t-1

3-16

TABLE 3-3

EXAMPLE FORMULAE

PRESSURE FORCE + AREA

ml- 1 t - 2 = m1t-2 - 12

ml-lt- 2 = ml-lt-2

POWER = CURRENT x POTENTIAL

ml2t-3 = l/2ml/ 213/2t-2 + 1-1/2ml/211/2-

ml2t -3 = ml2t-3

VELOCITY DISTANCE i TIME

It-1 = 1 - t

it-1 = It-1

AREA LENGTH x WIDTH

12 = 1 + 1

12 12

COMPOSITE UNIT EXAMPLE

DENSITY (ml- 3) = MASS (m) + VOLUME (13)

COMPOSITE (ml-2) = MASS (m) + AREA (12)

DENSITY (mI-2) = COMPOSITE(ml- 2) 4 HEIGHT (1)

3-17

TABLE 3-3 (Continued)

COMPOSITE UNIT DEFINITION SYNTAX DIAGRAM

DIMENSION

- -- 1 L. I

NUMBER I N
UNIT
NAME

QUANTITY COMPOSITE I UNIT
71 DEFINITION

-J \ r----- J
TIME I

VALUE I

r -- A combination of the fundamental quantities
I UNIT

DEFINITION r (m, 1, t, o and P) that describe the engineering

---------- I unit being defined.

3-18

SECTION 4.0

SUBROUTINE PARAMETER VALIDATION

T

4.1 PURPOSE OF DOCUMENT

This report will identify the role of the subroutine in the GOAL language.
Off-line validation of system subroutine calling sequence will be discussed,
and real time error conditions will be identified.

4.2 TECHNICAL APPROACH

Validation criteria will be established which will identify the require-
ments for various operations associated with the subroutine. Validation
procedures will be defined for the subroutine writer, the subroutine user,
and for the group responsible for the system data bank. Implementation
techniques will be discussed for the GOAL Compiler System Data Bank and
On-line Operations.

4.3 VALIDATION CRITERIA

4.3.1 Compilation Time

During the compile of a GOAL subroutine call, the subroutine revision
level should be verified, the number and type of parameters certified
and in some instances parameter values should be tested for limits.

4.3.2 Execution Time

Some error conditions can be anticipated, but nothing can be done by the
off-line system to prevent them from occurring. This type of error is
possible because some parameters will be calculated during execution of
a GOAL program and the only way to find the problem is to execute the
program.

Error recovery from real time error conditions can be accomplished
several different ways. Present day operating systems handle the real
time error in one of two ways. The program and all steps associated
with the program are terminated or a completion code is passed to the
program and the program makes its own decision as to what should be
done. An extension of the latter method is an error return in the
calling sequence for the subroutine where there may or may not also
be a completion code. In a real time checkout environment, the decision
to continue or terminate should probably be left to the program.

4.4 VALIDATION PROCEDURES

4.4.1 Role of the Data Bank

A special data bank, hereafter referred to as the System Data Bank,
should be available to provide the linkage for subroutine parameter
validation. It is felt that the subroutine object module should not
reside in the System Data Bank, but that a description of the number,
type, and size of parameters be included with the subroutine name and
revision level.

4-1

4.4.2 Role of the Compiler

The GOAL Compiler will be able to verify Subroutine calling sequences by
using the descriptive information contained in the System Data Bank. The
System Data Bank would be used by the compiler without requiring the
USE/FREE data bank statements in the GOAL program.

An additional benefit to be derived from this type of system is that
the compiler could create/update a file which contained a list of every
program that used each system subroutine. This information would be
useful in determining the impact of a subroutine error or a subroutine
change. The restriction could also be made that in order for a system
subroutine to be successfully compiled, it must be described in the
System Data Bank.

4.5 IMPLEMENTATION TECHNIQUES

4.5.1 Data Bank Update

A separate configuration control group should be responsible for main-
taining the System Data Bank. Inputs to this group should be Subroutine
name, number, type, and limits for each parameter.

4.5.2 GOAL Compiler

The Compiler can be used to validate all system subroutine data once
the subroutine descriptive data has been loaded into the System Data
Bank. Some limited capability should probably be provided for sub-
routines that are not system subroutines or subroutines that are not
defined in the System Data Bank.

4.5.3 Compilation Output Data

This area could have a special routine that performs parameter validation
before executing a subroutine. The only type of validation that should
be required at this time is parameter limit validation. It would probably
be more reasonable to perform this type of validation in the system sub-
routine.

4-2

SECTION 5.0

SELECTED APPLICATIONS

5.0 INTRODUCTION

A study was conducted to analyze the overall applicability of the GOAL lan-
guage to projected launch vehicle/space vehicle ground checkout requirements.
This analysis was accomplished by manually converting selected current ATOLL
and machine language programs to GOAL, and extrapolating the results from
this language conversion. This conversion and analysis was performed as
viewed from the test engineer standpoint.

5.1 OBJECTIVES

The primary objective of this study was to verify that the GOAL language is
capable of performing the tasks required for the efficient ground checkout
of launch vehicle/space vehicle systems. Emphasis was placed on ascertain-
ing the applicability and utility of this language in converting test
engineers' requirements directly into automated, self-documenting procedures.
The major points of detailed analysis centered upon:

o Applicability - can the required objectives defined in the
test engineers' specifications be accomplished utilizing
the GOAL language.

o Utility - is the high level procedural language GOAL the
logical or preferred choice for performing those tasks
associated with automated launch vehicle checkout.

o Adaptability - is the GOAL language adaptable to the
various disciplines, environments, and test facilities
encountered in checkout testing.

o Reliability, flexibility, and efficiency - does GOAL contain
the inherent characteristics to provide reliability in coding
and execution, the flexibility to handle widely varying check-
out requirements, while retaining efficiency in procedure
generation and documentation.

5.2 APPROACH

GOAL is a high level, engineer oriented language designed to be used by test
engineers to write automated test and checkout procedures directly from test
specifications and requirements. In order to verify the capability of this
language to fulfill previously defined objectives, three existing checkout
programs were converted to the GOAL language. Two of these programs, IAED
and IATS, were written in the ATOLL language, while the third GEOl was
written in machine language for the RCA-11OA computer. These programs were
selected for several reasons. First, IATS and IAED are both ATOLL programs
executed during the final launch sequence. It can be assumed that there
will be considerable commonality between these countdown sequences and those
proposed for future systems. Second, both of these ATOLL programs are inte-
grated programs, that is, they cover all stages as well as spacecraft. This
assures that test specifications for the widest possible variety of applica-
tions are being tested by these programs.

5-1

Thirdly, both of these ATOLL programs have been updated constantly, and use
many ATOLL operators, such as ARITH that were not available during prior
ATOLL releases. Fourth, these programs are both quite interactive with the
operator, giving ample opportunity to verify this technique in GOAL. Finally,
these programs freely use subroutines, allowing study of parameter passing and
other techniques.

The machine language program, GE01 was included in order to study the applica-
bility of GOAL to checkout programs that were too specialized in nature to be
written in the ATOLL language. Many techniques, formerly available only to
the machine language programmer, could be tested using the GOAL instruction
repertoire.

The initial approach to the conversion of the ATOLL programs was the one to
one approach. That is, for every ATOLL statement there would be one or a
corresponding group of GOAL statements. This allowed verification whether all
ATOLL statements could be converted directly into GOAL. Once confidence with
the overall GOAL language structure was gained, variations from the one to one
technique were introduced. GOAL statements were used replacing many ATOLL
instructions to test the efficiency of the GOAL language. Various table tech-
niques were also experimented with in order to gain a fuller understanding of
the language. No attempt was made to 100% verify the conversions from ATOLL
to GOAL, as size limitations precluded an overall compile on the existing
GOAL system and with execution of the program not possible even if a compile
could be obtained.

The conversion of the machine program GEOl to GOAL was straight forward.
Descriptive symbolic names were introduced for the program variables, with
the names being chosen so as to be inherently obvious as to the variables
replaced.

Some operations in both ATOLL and RCA11OA machine language could not be per-
formed directly in GOAL. Others required assumptions as to the executive or
implementation system that could not be justified at this time. For those
areas where coding the statement in GOAL was not appropriate for these
reasons, comment cards were included to indicate those instructions not
converted. The statement numbers used in all GOAL statements are identical
to those in the source programs, with the exception of those ATOLL steps
utilizing six significant digits, which could not be handled by the current
GOAL Compiler.

5.3 TECHNICAL SUMMARY

The conversion of major portions of the IAEU, IATS, and GEOl programs to the
GOAL language establishes that lOAL, in its present form, is capable of
handling most tasks required for launch vehicle ground checkout. The GOAL
language proved relatively easy to learn and use, and the english language
nature of GOAL reduces program documentation to a simple task. In general,
GOAL, when combined with certain assumptions as to its interface with tne
test system, should be able to nandle directly any task tnat may be requirea.

5-2

5.3.1 Language Syntax and Structure

The checkout language must adapt to the task at hand, that of ground checkout
of launch vehicles in an engineering environment. It is considered desirable
that checkout programs be written to conform to the engineering discipline
when possible, rather than to utilize highly specialized programming techniques.
Typical ATOLL programs provide test checkout by commanding the system under
test to an initial configuration, issuing a specific stimulus to that system,
and comparing test results with predetermined conditions. Proper verification
of this data usually results in program progression, while an error or abnormal
condition usually results in the display of an error message and a program
branch to an error routine.

These tasks can be accomplished quite effectively using GOAL, as is shown in
the following example.

$** ST 124 INVERTER POWER ON;

STEP02 SET (ST124) FUNCTIONS TO (TEST);

SET <MD01313> , <MD01314> TO ON FOR 1 SEC;

STEP03 VERIFY <MD12121> IS ON WITHIN 100 MSEC ELSE DISPLAY EXCEPTIONS
(*IU ST124 INVERTER DID NOT COME ON WHEN COMMANDED)
TO <CRT-A6> , <CRT-A7> , <CRT-A9> AND GO TO STEP2013;

STEP04 DISPLAY TEXT (IU ST124 INVERTER ON NORMALLY)
TO <CRT-A6> t <CRT-A7> , <CRT-A9>;

This sequence is typical of current ATOLL application programs. The attributes
of GOAL are quite obvious when reading this example. The test progression is
apparent in this example, even to one with no training in GOAL. No logic
ambiguity exists, for example, as to what messages will be displayed when
testing on the state of MDI2121.

Many instructions proved extremely useful and versatile during this study. The
VERIFY prefix was the most widely used, as when combined with an execution
statement allowed the testing of an external sensor, the display of an appro-
priate message, and the performance of the required response, all without

5-3

program branching. This type of combined operation greatly simplifies
program logic and materially reduces chance for error. The second most
widely used operator was 'SET', and, when used for multiple discretes,
or with its time option proved versatile and uncomplicated. In general,
the operator set was applicable to solving the problem at hand with little
need to comment. In certain respects, however, the study revealed some
areas where further study might lead to language enhancements.

5.3.1.1 External References. A symbolic name that references hardware
items or data not locally located in a particular GOAL program are denoted
by the use of angle brackets, such as <MDI1313>, while names that are local
to that program are denoted by parenthesis (ABCD). This is quite useful,
as external references are immediately obvious, and one level of redundancy
is provided by the required verification of the usage of an external reference
by its assignment in the data bank. The GOAL language uses separate operators
for internal and external data. The VERIFY prefix provides an example of
this. When internal names are referenced, the IF/THEN option must be utilized,
requiring positive logic and deleting the output exception capability. When
testing external designators, the full capabilities of this powerful prefix
are brought to bear, including the output exception compounded with a
response action, and either positive or negative logic. It would seem useful
if the full power of this VERIFY prefix were made available to all types of
variable testing. These comments apply equally well to most other operations
where a distinction is made between internal names and external references.
Further advantages could be obtained by reductions in the syntax set, and
hence improve the ease of learning/using the language.

5.3.1.2 Syntax Documentation. The GOAL language is thoroughly documented
by the use of syntax diagrams. These diagrams represent a new technique and
quite adequately document the language. However, in a language with this
large and complex instruction set, the number of syntax diagrams used tends
to increase the learning time for the language. It might be possible to
reduce the number of required syntax diagrams by:

a. Eliminating obvious diagrams, such as LETTER and NUMBER

b. Combining others, such as LIST NAME, COLUMN NAME, and PROGRAM NAME

c. Reorganizing the syntax handbook into a users guide, introducing
a few ground rules, such as "are leading zeros allowed on step numbers?" that
may not be obvious or easily represented by syntax notation.

5.3.1.3 Subroutines and Macros. These are programming aids more familiar
to the programmer than the engineer. Subroutines however, have been success-
fully used by engineers in many ATOLL procedures. One feature of subroutines
that is not natural to the engineer is the method of parameter passing. The
concept most easily understood by an engineer is the 'common' storage location
where required data is stored, and programs or subroutines can access it, such

5-4

as the current arithmetic cell concept in ATOLL. This concept is easy to
learn, would reduce the required data declarations in both subroutines and
programs, and could be adapted to the needs of parameter passing for con-
currently executing procedures.

The use of macros was also studied during this program conversion. Macros
are a programming aid that are generally unfamiliar to a test engineer.
Most current test and checkout programs are brute force procedures, that
lack the required repetition of complex sequences that lend themselves to
macro usage. In fact, most areas studied as candidates for macro implementa-
tion usually turned out to be more properly included as part of the executive
or operating system.

5.3.1.4 Table Usage. Much time was spent trying to effectively use tables
to perform complex tasks. These included large tables to be used similar to
profile tables, varying to small tables containing only two rows. In general,
table techniques developed were not altogether successful. For example, two
general methods exist for determining if a switch is in auto.

S** TABLE DECLARE METHOD FOR SWITCH POSITION TESTING;

DECLARE STATE TABLE (SI HYD SYS 1 SW) WITH 2 ROWS AND 3 COLUMNS

TITLED (OFF) , (AUTO) , (ON) WITH ENTRIES

<LDI1572> OFF , OFF , ON
<LD11573> ON , OFF , OFF

STEP2110 VERIFY (SI HYD SYS I SW) FUNCTIONS ARE EQUAL TO (AUTO)
ELSE DISPLAY EXCEPTIONS
(*S1 HYD SYS I SWITCH NOT IN AUTO) TO <CRT-O>;

$** COMPOUND METHOD FOR SWITCH POSITION TESTING, NO DECLARATIONS NEEDED;

STEP2110 VERIFY <LDIL572> , <LD11573> IS OFF ELSE DISPLAY EXCEPTIONS
(Sl HYD SYS 1 SWITCH NOT IN AUTO) TO <CRT-O>;

5-5

It is obvious that method 2, compounding the test parameter, is shorter
to code. Likewise it is easier to debug as the sensor notation is avail-
able at the equation, and no reference to the table is required. It can
be said that for most operations allowing compound operations, the
referencing of variables with like attributes and states should not be
accomplished using table techniques.

Table techniques are more applicable where large numbers of variables are
involved and the required state may vary during the program. IAED was
typical of a program where the desired state of discretes in a table was
modified continually throughout the program, while in IATS the required
state was established only once in the program. Study of the listings will
show the techniques used for each. Two points did come to light during the
study of table techniques. First, the applicability of system output
messages to table compares would greatly reduce the workload of producing
the required messages. Secondly, the inclusion of a "don't care" initial
declaration for a particular row and column could reduce the requirements
for row inhibit and enable, which can possibly lead to errors if extensive
program branching is undertaken. An example of this is shown at the end of
the IATS conversion.

5.3.1.5 Data Banks. The general concept of the data bank tends to reduce
the GOAL procedure writing workload. It became obvious during the program
that further data bank refinement is desirable. In many cases it should be
possible to status a function designator defined as a load, such as to
check the set point of a thermostat or the level for a tank fill. Symbolic
names might also be taken from the data bank at compile time, to be included
in system messages outputted as the result of table compares. The data bank
also might include definition of system variables to be used for the passing
of analog information from program to subroutine. Finally, a hierarchy of
data banks should be studied, as the usage of data bank structures is not an
exact replacement for the DISA operator. Along with this, any function
designator classed as a sensor should be available to any GOAL program.

5.3.1.6 System Interface. One area where definitions are necessarily unclear
is the interface with the test system. Assumptions were made to expedite
program conversion areas where these assumptions were made included interface
with the count clock and GMT, the availability of millisecond timers, the
availability of system routines for hardware devices, (i.e., switch selector),
and the availability of analog communication cells. Other ATOLL operators
invoked special routines that were assumed to be available in the executive
system, and no special notation has been made of these.

5.3.1.7 Miscellaneous Comments. Many other minor comments concerning the
GOAL language have been listed in tabular form on the GOAL Syntax Summary.
These are grouped according to syntax number, and in general do not constitute
significant changes to GOAL. However, many, such as the inclusion of a NO-op
statement (syntax 73) and the inclusion of basic math in the relational

5-6

formula (syntax 62) represent minor modifications that would simplify
procedural coding. Others, such as the comments under syntax diagrams 39
and 42 are included only for completeness.

5.3.2 Overall Summary

In general, this program conversion effort established the effectiveness of
GOAL in meeting program objectives. No serious flaws or concepts were
uncovered during the study. The language is impressive for its self-documenta-
tion and the overall lack of ambiguity of its various operators. However,
programs tend to become lengthy when written in GOAL, and considerable key-
punch effort must be expended. Minor improvements, implementation of short
form coding, and effective interface with the test system should establish
GOAL as a language well suited to launch vehicle checkout.

5-7

GOAL SYNTAX SUMMARY

SYNTAX
NO. DIAGRAM SUMMARY

1 ACTIVATE TABLE Enables all or part of a table previously
inhibited, allowing table to be modified
somewhat similar to a profile table. In
practice exact table configuration may be
unclear.

2 APPLY/ANALOG This operation is hardware and system depen-
dent, with no counterpart in current techniques.

3 ASSIGN Useful only for internal names, counter-
part to analog LET and external reference
SET and ISSUE. Perhaps combining these
to one operator desirable.

4 AVERAGE N/C

5 - 8 BEGIN DATA BANK Comments in text body for macros and sub-
MACRO routines.
PROGRAM
SUBROUTINE

9 BINARY NUMBER Numeric formula does not allow use of binary
and other number patterns unless declared
and initialized.

10 CHARACTER ASCII

11 CHARACTER STRING Syntax diagrams, such as this, expand size
of manual & number of diagrams for user.
Some reduction is desirable. Use of 'rules'
could help.

12 COLUMN NAME N/C

13 COMMENT N/C

14 COMPARISON TEST Comments under 44 and 62.

15 CONCURRENT Limited operations allowed by concurrent
prefix require 'tricks' to do many required
tasks. Perhaps concurrent should be an
allowable prefix. For example, why allow
'and' part of 'VERIFY' syntax and not 'ELSE'
option.

5-8

GOAL SYNTAX SUMMARY
(Continued)

SYNTAX
NO. DIAGRAM NAME SUMMARY

17-25 DECLARE DATA Stating number of rows is redundant if
NUMERIC LIST table or list filled.
QUANTITY LIST
QUANTITY TABLE
STATE LIST
STATE TABLE
TEXT LIST
TEXT TABLE

26 DELAY OR UNTIL option rarely used, as somewhat
redundant with VERIFY.

27 DIMENSION Should be part of QUANTITY.

28 DISABLE INTERRUPT Unsure how interrupt is defined in data
bank - possibility program could estab-
lish interrupt.

29 END Allow program/subroutine name on this card.

30 EXPAND MACRO Macro statements programmer oriented, not
natural to engineer. Few tasks so repeti-
tive to require use. Execute option
reduces self documenting feature of GOAL.
Parenthesis required on macro name when
defined, but not when used.

31 EXTERNAL DESIGNATOR Parenthesis on table name of functions
limits quick visibility of external items.

32 FREE DATA BANK N/C

33 FUNCTION DESIGNATOR Special characters, other than '-' are
unusual in names of this sort.

34 GO TO NO-OP statement, Desirable for target.

35 HEXADECIMAL NUMBER N/C

36 INDEX NAME N/C

37 INHIBIT TABLE Needed due to type of table operation,
comments under 1 and in text.

5-9

GOAL SYNTAX SUMMARY
(Continued)

SYNTAX
NO. DIAGRAM NAME SUMMARY

38 INTEGER NUMBER N/C

39 INTERNAL NAME Not sure of grouping for table.

40 ISSUE DIGITAL Confusing operator, external designator
PATTERN may be a state, etc. Feel issue/set/

apply/let equal should be reevaluated.

41 LEAVE Redundant to perform subroutine/program?

42 LET EQUAL EQUAL TO option reads LET (ABC) EQUAL
TO 5. Reevaluate multiplicity of 'SET'
operators.

43 LETTER N/C

44 LIMIT FORMULA Internal name may be a table. Binary,
hex, etc., not permitted unless declared
as an internal name.

45 LIST NAME N/C

46 MACRO LABEL N/C

47 NAME '-' should be only symbol allowed (same
as for FUNCT DESIG). 16 character names
should be sufficient.

48 NUMBER N/C

49 NUMBER PATTERN N/C

50 NUMERAL N/C

51 NUMERIC FORMULA Math for number patterns not allowed.
Quantity must be in parenthesis here,
which is not consistent. Parenthesis
around imbedded numeric formula unclear.

52 OCTAL NUMBER N/C

53 OUTPUT EXCEPTION Very useful instruction.

5-10

GOAL SYNTAX SUMMARY
(Continued)

SYNTAX
NO. DIAGRAM NAME SUMMARY

54 PARAMETER N/C

55 PERFORM PROGRAM N/C

56 PERFORM SUBROUTINE Parameter passing (positional data) is
not natural to engineers, perhaps use of
arithmetic cell technique applicable.

57 PROCEDURAL STATEMENT Any executable statement, including 'END'
PREFIX should allow statement number.

58 PROGRAM NAME N/C

59 QUANTITY Parenthesis required in 51 inconsistent
with usage in other diagrams.

60 READ N/C

61 RECORD External devices (CRTs, etc.) locally
declared. Display package (clear, line
number, etc.) may require more sophisti-
cation. Method of providing continuous
monitor of parameters (other than concur-
rently) may be desirable.

62 RELATIONAL FORMULA Math may be desirable such as (A) is =
(B) + 5, as when checking pressure
changes or current changes during appli-
cation of loads.

63 RELEASE CONCURRENT N/C

64 REPEAT N/C

65 REPLACE N/C

66 REQUEST KEYBOARD N/C

67 RESUME Same comments as 41.

68 REVISION LABEL N/C

5-11

GOAL SYNTAX SUMMARY
(Continued)

SYNTAX
NO. DIAGRAM NAME SUMMARY

69 ROW DESIGNATOR N/C

70 SET DISCRETE See comments syntax diagram 3.

71 SPECIFY N/C

72 STATE N/C

73 STEP NUMBER 6 digits desirable, 4 step, 2 substep, as
step numbers useless for documentation
unless sequential. NO-OP operator desir-
able as target statement.

74 STOP Restart labels and description will be for-
matted on CRT, as to what each restart label
accomplishes is meaningless to an operator
without this description. Thus display
portion redundant, and only way to delete this
output is to use unrestricted restart.

75 SUBROUTINE NAME Revision label option.

76 SYMBOL See Syntax 10.

77 TABLE NAME Can be external designator.

78 TERMINATE N/C

79 TEXT CONSTANT Use of parenthesis confusing.

80 TIME PREFIX Implementation dependent, see text.

81 TIME VALUE N/C

82 USE DATA BANK Data Bank not total replacement for DISA
Operator. Hierarchy of Data Banks should
be studied. Sensor Data Bank should be
universal. Should be able to read value
of a 'load' if in table form in computer.
Need analog communication cells between
programs.

5-12

SECTION 6.0

SYSTEM MACROS

6.1 INTRODUCTION

Several 'system' type macros were written during the course of this study
for the purpose of establishing macro candidate types for inclusion in the
system data bank. This investigation was centered around two classes of
Macros. The first type of macro was used to provide a simple interface
between procedural requirements and the operational characteristics of
Test hardware. The second type was used to ease the coding burden for long
and/or repetitious tasks. The macros written during this investigation are
included with this report.

6.2 OBJECTIVES

The objective of this investigation was to provide an overview of the re-
quirements for macro routines to be included in the GOAL system data bank.
It was considered desirable to establish those areas where macros would have
the greatest applicability, and to investigate the interface between these
macro types and the test engineer writing the procedure. The analysis was
performed by outlining and coding into macros certain tasks performed during
Apollo/Saturn checkout. These tasks included repetitious steps performed by
automated procedures during vehicle checkout, and specific system responses
to Atoll operators that might not be apparent to the test engineer. The
application of specific system macros is dependent upon the final definition
of the test system, so generation of final or 'operational' macros was not
attempted.

6.3 APPROACH

The basic objective in creating the GOAL language was to define a flexible
test engineer oriented language to provide ground checkout of space vehicles.
The wide range of attributes and requirements of this language have been
discussed elsewhere. However, one area that can lead to efficient programming
in the GOAL language and reduce the coding effort is the judicious application
of programming aids, such as macros. Macro techniques are not unique to GOAL,
but are included in most programmer oriented languages. The applicability of
macros to the engineering oriented language, GOAL, was studied from several
aspects.

First, macros by themselves do not increase the capabilities of the language.
What they do accomplish is to ease the burden on the test writer by reducing
coding requirements. It is also natural that with this ease on coding burden
the test engineer will be better able to produce a better test program.

Second, other programming aids exist to ease this coding workload which must
be considered. The REPEAT statement in GOAL is an example of this. REPEAT
allows segments of a GOAL program to be executed over and over again, regard-
less of their location in the overall program. This is quite valuable, as

6-1

repetitive portions of the program need not be recopied, reducing both
programmer workload and program object code size. REPEAT, when used with
index variables, even allows calculation of different parameters on each
pass, as may be required for testing of five separate engines. Macros were
thus studied as to their relative applicability when compared to other
techniques.

Thirdly, many tasks that can be handled by macros can also be handled by
subroutines or subprograms. This subject is one that is discussed in many
programming texts, and in GOAL the tradeoff between each method does not
lend itself to a simple answer.

Finally, several tasks considered as candidates for macro subroutines must
also be considered as to their inclusion in the system executive program
package.

6.4 SUMMARY

Two distinct areas for potential system macro application were denoted during
this investigation. First, a class of macros was generated to assist with
the interface of specialized test hardware requirements with the overall test
system. Secondly, a class of macros was generated that can be defined solely
as programming aids.

6.4.1 Hardware Interface Macros

During vehicle checkout, the test system must interface with many types of
specialized hardware items. One example of this is the switch selector.
Currently ATOLL programs use a single operator to issue a switch selector
channel command. The operating system then invokes a special procedure to
carry out the required command and associated system validation. This pro-
cedure was coded as a macro, and is included as example 6-1.

Another area of hardware interface that is applicable to macro programming is
the repetitive powering on and off of similar systems. The various auxiliary
and stage power supplies are typical candidates for this application. The
power supplies included have different voltage and load current capacities,
but common macros can be generated. Macros covering power on, power off, and
the backup battery switchover test are included as examples 6-2, 6-3, and 6-4.

6.4.2 Programming Aid Macros

A second class of macros investigated included those that were specifically
written to reduce programming workload. These macros were aimed directly at
the coding tasks that were so repetitive in nature that relief was suggested.

The current LCC firing room configuration requires that most switches communica-
ting with the RCA-11OA be three way switches. This allows for manual as well as
automated control of the test item. However, the position of the switch can no
longer be determined by a simple on-off test, and a table declaration is
suggested. A simple macro was generated to perform this declaration task, and
is included as example 6-5.

6-2

Another programming aid macro was generated to assist with bookkeeping.
Many times in testing it is desirable to specifically note exception items
in a table and display the results on request. The procedure to accomplish
this is not difficult, but a system type macro was written to allow easy
insertion of this technique in the program as example 6-6.

6.5 CONCLUSIONS

System macros were generated for several programming functions. There is no
question that the macros generated do ease the test engineer's burden. These
macros also establish that, once the engineer becomes familiar with the para-
meter passing, macros should become a useful tool.

Macros were especially applicable when used for the task of hardware interface.
They should be applicable to the task of power application and removal of many
types of hardware systems. Macros should also be useful in providing the inter-
face between the test program and specialized hardware. They are especially
advantageous for this application as they are not included as part of the
system executive, and thus lend themselves to testing at other locations, as
well as adapting to local configuration control.

Macros intended primarily as programming aids can be just as useful. One task
already identified is the reduction in coding requirements for the test engineer,
and macros can play a significant role in that reduction.

In summary, the proper use of macros should lead to more efficient and precise
checkout procedures. Macros should also lead to more program standardization,
as tasks will be performed in an identical manner regardless of the individual
test engineer.

One test that cannot be completed at this time is a tradeoff between various
programming techniques. Macros, subroutines, the REPEAT statement, and
specialized system executive programs are all logical candidates when con-
sidering techniques for more effective and efficient GOAL programming. The
studies required to complete this task must await further definition.

6-3

$ SECTION 6 EXAMPLES - SELECTED SYSTEM MACROS;

$ THE FOLLOWING ARE SELECTED APPLICATIONS OF CANDIDATE TYPE SYSTEM
$ MACROS. THESE DO NOT CONSTITUE RECOMMENDED APPLICATIONS, BUT
$ SERVE TO ILLUSTRATE THOSE AREAS WHERE MACRO TECHNIQUES MAY BE
$ USEFUL. THESE MACRO APPLICATIONS ARE REPRESENTATIVE OF CURRENT
S CHECKOUT PROCEDURES AND DO NOT REPRESENT EXTRAPOLATIONS AS TO
$ FUTURE CHECKOUT TECHNIQUES;

$ IN GENERATING THESE MACROS BRANCHING WAS KEPT TO AN ABSOLUTE
$ MINIMUM, TO REDUCE THE NEED OF PASSING UNIQUE STEP NUMBERS AS
$ PARAMETERS.;

$ EXAMPLE 6 - I SWITCH SELECTOR CHANNEL ISSUE;

S THE FOLLOWING IS AN EXAMPLE OF A HARDWARE ORIENTED MACRO APPLICATION.;
$ THE FUNCTIONS PERFORMED IN THIS MACRO ARE NOW PERFORMED AS PART OF ;
$ THE SYSTEM EXECUTIVE. HARDWARE ORIENTED MACROS SUCH AS THIS BECOME ;
$ ATTRACTIVE WHEN INFREQUENTLY USED HARDWARE FUNCTIONS ARE ENCOUNTERED,;
$ NOT JUSTIFYING INCLUSION IN THE SYSTEM EXECUTIVE, OR IF SPECIALIZED ;
S HARDWARE TEST REQUIREMENTS MUST BE MET AT VARIOUS LOCATIONS OR UNDER ;
$ DIFFERENT TEST SYSTEM EXECUTIVES;

BEGIN MACRO SWITCH SELECTOR ISSUE , STAGE , CHANNEL , RECYCLE , ERROR;

$** THIS MACRO REQUIRES FOUR ENTRIES:;

s 1. STAGE SELECTED, SIB, SIVB, SIU;
$ 2. CHANNEL TO BE ISSUED IE CHAN38;
$ 3. UNIQUE STEP NUMBER FOR ERROR ROUTINE (ERROR);
$ 4. UNIQUE STEP NUMBER FOR RECYCLE OPTION (RECYCLE);

$** NOTE - UTILITY FLAG <FLGO> IS USED IN MACRO TO DETECT ERRORS;
$ UTILITY FLAG <FLG1> IS USED TO INDICATE RECYCLE;

(RECYCLE) SET <FLG1> TO ON; SSET RECYCLE FLAG;
SET <FLGO> TO OFF; SRESET ERROR FLAG;

VERIFY <IU SW SEL PWR> IS ON ELSE DISPLAY EXCEPTIONS
(IU SWITCH SELECTOR POWER IS OFF) TO <CRT-O>
AND SET <FLGO> TO ON;

VERIFY <LVDA-ESE SW> IS OFF ELSE DISPLAY EXCEPTIONS
(LVDA-ESE SWITCH IS IN LVDA POSITION) TO <CRT-O>
AND SET <FLGO> TO ON;

6-4

$ SECTION 6 EXAMPLES - SELECTED SYSTEM MACROS;
$ EXAMPLE 6 - 1I SWITCH SELECTOR CHANNEL ISSUE (CONT) ;

VERIFY <SW SEL MANUAL SELECT> IS OFF ELSE DISPLAY EXCEPTIONS
(SWITCH SELECTOR IS IN MANUAL MODE) TO <CRT-0>
AND SET <FLGO> TO ON;

VERIFY <((STAGE) SW SEL INHIBIT> IS OFF ELSE DISPLAY EXCEPTIONS
((STAGE) SWITCH SELECTOR INHIBIT IS ON) TO <CRT-O>
AND SET <FLGO> TO ON;

VERIFY <(STAGE) SW SEL PWR> IS ON ELSE DISPLAY EXCEPTIONS
((ISTAGE) SWITCH SELECTOR POWER IS NOT ON) TO <CRT-0>
AND SET <FLGO> TO ON;

VERIFY <((STAGE) SW SEL ALL ZEROS> IS ON ELSE DISPLAY EXCEPTIONS
((STAGE) SWITCH SELECTOR ALL ZEROS NOT ON) TO <CRT-O>
AND SET <FLGO> TO ON;

VERIFY <FLGO> IS OFF ELSE GO TO (ERROR); $ERROR-NO ISSUE ;

$** SWITCH SELECTOR CHANNEL ISSUE ROUTINE;

SET <(STAGE) STG SELECT> TO ON FOR 100 MSEC;
WAIT 40 MSEC;

VERIFY <((STAGE) STAGE SELECT> IS ON ELSE DISPLAY EXCEPTIONS
((STAGE) SWITCH SELECTOR STAGE SELECT FAILED) TO <CRT-O>
AND SET <FLGO> TO ON;

VERIFY <FLGO> IS OFF ELSE GO TO (ERROR);

SET <SW SEL (CHANNEL)> TO ON FOR 100 MSEC;
WAIT 50 MSEC;

VERIFY <SW SEL ERROR> IS OFF ELSE DISPLAY EXCEPTIONS
(SWITCH SELECTOR ERROR DURING ISSUE OF (CHAN)) TO <CRT-O>
AND SET <FLGO> TO ON;

$** ERROR DETECTION ROUTINE;
(ERROR) VERIFY <FLGI> IS ON ELSE SET <FLGO> TO OFF;

SET <FLG1> TO OFF;

VERIFY <FLGO> IS OFF ELSE DISPLAY EXCEPTIONS
(SWITCH SELECTOR FUNCTION NOT ISSUED FOR ABOVE REASONS)
TO <CRT-O>;

VERIFY <FLGO> IS OFF ELSE DISPLAY EXCEPTIONS
(ENTER (RECYCLE) TO RETRY, (ERROR) TO CONTINUE)
TO <CRT-O>;

VERIFY <FLGO> IS OFF ELSE STOP AND INDICATE RESTART LABELS
(RECYCLE), (ERROR);

END MACRO;

6-5

S SECTION 6 EXAMPLES - SELECTED SYSTEM MACROS;

$ EXAMPLE 6 - 2 AUXILLIARY AND STAGE POWER SUPPLY ON;

$ THIS MACRO IS AN EXAMPLE OF A TYPICAL POWER ON PROCEDURE THAT CAN
$ BE HANDLED BY A SYSTEM MACRO. THE ADVANTAGE TO USING A MACRO IS
$ THE SPEED OF EXECUTION IF ONLY ONE DR TWO SUPPLIES ARE TURNED ON
$ IN A GIVEN PROCEDURE. IF SEVERAL SUPPLIES ARE MANIPULATED,
S SUBROUTINES MIGHT BE ADVANTAGEOUS TO REDUCE OBJECT SIZE.

BEGIN MACRO POWER ON , (SUPPLY) , (ERROR);
S PARAMETERS PASSED TO THIS MACRO;
$ 1. SUPPLY - POWER SUPPLY DESIG IE 60100;
$ 2. ERROR - UNIQUE STEP NUMBER FOR BRANCH ON ERROR COND;

SET <FLGO> TO ON; $SET ERROR FLAG;

VERIFY <(SUPPLY) CBI> IS ON ELSE DISPLAY EXCEPTIONS
((SUPPLY) MAIN CIRCUIT BREAKER IS OPEN) TO <CRT-O>
AND GO TO (ERROR);

SET <(SUPPLY) START SW> TO ON FOR .5 SEC;

VERIFY <(SUPPLY) SPLY ON I> IS ON WITHIN 1 SEC ELSE DISPLAY
EXCEPTIONS ((SUPPLY) POWER SUPPLY DID NOT COME ON)
TO <CRT-O> AND GO TO (ERROR);

$** VOLTAGE ADJUST ROUTINE, VOLTAGE JUST ABOVE SET WITH NO LOAD;

VERIFY <(SUPPLY) VOLTS> IS LESS THAN (SET VOLTS)
ELSE SET <(SUPPLY) VOLTS DECRS> TO ON;

WAIT 30 SECS OR UNTIL <(SUPPLY) VOLTS> IS LESS THAN
(SET VOLTS);

SET <(SUPPLY) VOLTS DECRS> TO OFF;

VERIFY <(SUPPLY) VOLTS> IS LESS THAN (SET VOLTS)
ELSE DISPLAY EXCEPTION ((SUPPLY) VOLTAGE CANNOT BE SET)
TO <CRT-O> AND GO TO (ERROR);

SET <(SUPPLY) VOLTS INCRS> TO ON;

WAIT 30 SECS OR UNTIL <(SUPPLY) VOLTS> IS GREATER
THAN (SET VOLTS);

SET <(SUPPLY) VOLTS INCRS> TO OFF;

VERIFY <(SUPPLY) VOLTS IS GREATER THAN (SET VOLTS) ELSE DISPLAY
EXCEPTIONS ((SUPPLY) VOLTAGE CANNOT BE SET) TO <CRT-O>
AND GO TO (ERROR);

6-6

$ SECTION 6 EXAMPLES - SELECTED SYSTEM MACROS;
$ EXAMPLE 6 - 2 AUXILLIARY AND STAGE POWER SUPPLY ON (CONT) ;

SET <((SUPPLY) OUTPUT PWR SW> TO ON;
VERIFY <(SUPPLY) OUT PWR ON I> IS ON WITHIN 1 SEC ELSE
DISPLAY EXCEPTIONS ((SUPPLY) OUTPUT POWER NOT ON)
TO <CRT-O> AND GO TO (ERROR);

SET <FLGO> TO OFF; $RESET ERROR FLAG;

(ERROR) VERIFY <FLGO> IS OFF ELSE DISPLAY EXCEPTIONS
((SUPPLY) POWER ON FAILED FOR ABOVE REASONS) TO <CRT-O>
AND SET ((SUPPLY) STOP SW> TO ON FOR I SEC;

VERIFY <FLGO> IS OFF THEN DISPLAY TEXT
((ISUPPLY) POWER SUPPLY STARTED NORMALLY) ,
(BUS VOLTAGE IS) ((SUPPLY) BUS V) TO <CRT-O;

END MACRO;

$ EXAMPLE 6 - 3 AUXILLIARY AND STAGE POWER BATTERY TEST;

$ THIS MACRO IS USED TO TEST THE BACKUP BATTERY SWITCHOVER FOR
$ AUX AND STAGE POWER SUPPLIES;

BEGIN MACRO BATTERY TEST (SUPPLY) , (ERROR);

$ PARAMETERS PASSED TO THIS MACRO;

s 1. SUPPLY - POWER SUPPLY DESIG IE 6D100;
s 2. ERROR - UNIQUE STEP NUMBER FOR BRANCH ON ERROR;

SET <FLGO> TO OFF; $RESET ERROR FLAG;

VERIFY <(SUPPLY) OUT PWR ONI> IS ON ELSE DISPLAY EXCEPTIONS
((SUPPLY) POWER SUPPLY NOT ON LINE) TO <CRT-O> AND
GO TO (ERROR);

6-7

$ SECTION 6 EXAMPLES - SELECTED SYSTEM MACROS;

$ EXAMPLE 6 - 3 AUXILLIARY AND STAGE POWER BATTERY
TEST (CONT) ;

VERIFY <(SUPPLY) BAT VOLTS> IS GREATER THAN 24 VOLTS ELSE

DISPLAY EXCEPTIONS ((SUPPLY) BACKUP BATTERY NOT AVAILABLE)

TO <CRT-O> AND SET <FLGO> TO ON;

SET <(SUPPLY) BAT EN SW> TO ON;

VERIFY <((SUPPLY) PK2> IS ON ELSE DISPLAY EXCEPTIONS

((SUPPLY) BATTERY ENABLE FAILED)
TO <CRT-O>

AND SET <FLGO> TO ON;

VERIFY <FLGO> IS OFF ELSE GO TO (ERROR);

SET <FLGO> TO ON; $SET ERROR FLAG;

SET <(SUPPLY) OUT PWR ON SW> TO OFF FOR I SEC;

VERIFY ((SUPPLY) BATTERY ON I> IS ON ELSE DISPLAY EXCEPTIONS

((SUPPLY) BATTERY SWITCHOVER FAILED) TO <CRT-O>
AND

GO TO (ERROR);

SET <(SUPPLY) RESET SW> TO ON FOR 1 SEC;

VERIFY <((SUPPLY) BATTERY ON I> IS OFF ELSE DISPLAY

EXCEPTIONS (BATTERY WOULD NOT RESET) TO <CRT-O> AND

GO TO (ERROR);

SET <FLGO> TO OFF; $RESET ERROR FLAG;

(ERROR) VERIFY <FLGO> IS OFF ELSE DISPLAY EXCEPTIONS

((SUPPLY) BATTERY SWITCHOVER TEST
FAILED FOR ABOVE REASONS)

TO <CRT-O>;

END MACRO;

6-8

S SECTION 6 EXAMPLES - SELECTED SYSTEM MACROS;

$ EXAMPLE 6 - 4 AUXILLIARY AND STAGE POWER SUPPLY OFF;

$ THIS MACRO TURNS OFF A TYPICAL POWER
SUPPLY. AS IN OTHER MACROS;

$ BRANCHING HAS BEEN KEPT TO A MINIMUM TO REDUCE STEP NUMBER ;

$ PARAMETER PASSING;

BEGIN MACRO POWER OFF , (SUPPLY) , (ERROR);

$ PARAMETERS PASSED TO THIS MACRO;

$ I. SUPPLY - POWER SUPPLY TO BE TURNED OFF IE 6D100;

$ 2. ERROR - UNIQUE STEP NUMBER FOR BRANCH ON ERROR
COND;

SET <FLGO> TO OFF; $SET ERROR FLAG;

VERIFY <(SUPPLY) AMPS> IS LESS THAN 5 AMP ELSE DISPLAY

EXCEPTIONS (LOAD STILL APPLIED - POWER OFF NOT ATTEMPTED)

TO <CRT-O> AND SET <FLGO> TO ON;

VERIFY <(STAGE) LOCKUP EN> IS OFF ELSE DISPLAY EXCEPTIONS

(LOCKUP ENABLE IS ON - POWER OFF NOT ATTEMPTED)

TO <CRT-O> AND SET <FLGO> TO ON;

VERIFY <(SUPPLY) BATTERY EN> IS OFF ELSE DISPLAY EXCEPTIONS

((SUPPLY) BATTERY ENABLE ON - POWER OFF NOT ATTEMPTED)

TO <CRT-O> AND SET <FLGO> TO ON;

VERIFY <FLGO> IS OFF ELSE GO TO (ERROR);

SET <FLGO> TO ON; $SET ERROR FLAG;

SET <(SUPPLY) OUT PWR SW> TO OFF;

VERIFY <(SUPPLY) OUT PWR ON I> IS OFF WITHIN 1 SEC ELSE

DISPLAY EXCEPTIONS ((SUPPLY) OUTPUT POWER WOULD NOT TURN OFF)

TO <CRT-O> AND GO TO (ERROR);

SET <(SUPPLY) STOP SW> TO ON FOR .5 SEC;

VERIFY <(SUPPLY) VOLTS > IS LESS THAN I VOLT WITHIN I SEC

ELSE DISPLAY EXCEPTIONS ((SUPPLY) DID NOT TURN OFF)

TO <CRT-O> AND GO TO (ERROR);

SET <FLGO> TO OFF;

(ERROR) VERIFY <FLGO> IS OFF ELSE DISPLAY EXCEPTIONS

((SUPPLY) POWER COULD NOT BE REMOVED FOR ABOVE REASONS)

TO <CRT-O>;

END MACRO;

6-9

$ SECTION 6 EXAMPLES - SELECTED SYSTEM MACROS;

$ EXAMPLE 6 - 5 SHORT MACRO FOR TABLE DECLARATIONS;

$ THE FOLLOWING IS AN EXAMPLE OF A VERY SHORT SYSTEM MACRO TO RELIEVE

$ THE TEST WRITER FROM THE BURDEN OF CODING THE RELATIVELY LONG

$ STATEMENT REQUIRED TO DECLARE THE ATTRIBUTES OF THE STANDARD THREE

$ POSITION SWITCH MOST USUALLY REQUIRED FOR DISCRETE CONTROL IN THE ;

S PRESENT LCC FIRING ROOM CONFIGURATION.

BEGIN MACRO THREE WAY SW, (SW FUNCT NAME) , <FUNCTI> , (STATEl) ,
<FUNCT2> , (STATE2);

DECLARE STATE TABLE (SW FUNCT NAME) WITH 2 ROWS AND 3 COLUMNS

TITLED (OFF) , (AUTO) , (ON) WITH ENTRIES

<FUNCTI> (STATEL) , OFF , (STATE2) ,
<FUNCT2> (STATE2) , OFF , (STATEL)

END MACRO;

S EXAMPLE 6 - 6 MACRO STORAGE TABLE;

$ EXAMPLE OF MACRO SKELETON TO RECORD TEST DATA AND INDEX AUTOMATICALLY;
$ MACRO REQUIRES DECLARE MACRO AND DISPLAY MACRO TO COMPLETE

$ ALL REQUIRED TASKS. ;

BEGIN MACRO DECLARE , (NAME);
S THIS MACRO REQUIRED TO ESTABLISH STORAGE FOR DATA;

DECLARE QUANTITY LIST ((NAME)) WITH 100 ENTRIES;
DECLARE QUANTITY LIST ((NAME) TIME) WITH 100 ENTRIES);
DECLARE NUMBER ((NAME) COUNT) = 0.;

END MACRO;

BEGIN MACRO STORE , (NAME) , <FUNCT> , (FULL) ;

$ THIS MACRO REQUIRES THREE PARAMETERS;
$ 1. NAME - THE NAME OF THE STORAGE TABLE;
$ 2. <FUNCT> - THE FUNCT DESIG TO BE ACCESSED;
$ 3. FULL - THE UNIQUE STEP NUMBER FOR BRANCH IF FULL;

LET ((NAME) COUNT) = ((NAME) COUNT) + 1;

IF ((NAME) COUNT) IS GREATER THAN 100 THEN GO TO (FULL);

READ <FUNCT> AND SAVE AS ((NAME)) ((NAME) COUNT);

READ <GMT> AND SAVE AS ((NAME) TIME) ((NAME) COUNT);

(FULL) IF ((NAME) COUNT) IS GREATER THAN 100 THEN DISPLAY TEXT

((NAME) TABLE IS FULL - NO FURTHER DATA MAY BE STORED)
TO <CRT-O>;

END MACRO;

6-10

